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ABSTRACT. In this note we consider the uniqueness of solution to the Cauchy problem
for non-cutoff Boltzmann equation in the whole space. Several results in different function
spaces are detailed in the cases of hard and soft potentials. In particular, we discuss the
uniqueness of the solution with the polynomial decay with respect to the velocity variable,
in the soft potential case of the classical sense, where the singular change of variables from
“pres” to “post ” collisional velocity plays an important role.

1. INTRODUCTION AND UNIQUENESS RESULTS

We consider the Cauchy problem for the spatially inhomogeneous Boltzmann equation,

(1)

{
∂t f +v·∇x f = Q( f , f ), x,v∈ R3, t > 0,
f (0,x,v) = f0(x,v) ,

]

where f = f (t,v) is the density distribution function of particles with positionx∈ R3 and
velocity v ∈ R3 at timet. The right hand side of (1) is given by the Boltzmann bilinear
collision operator

Q(g, f ) =
∫
R3

∫
S2

B(v−v∗,σ)
{

g(v′∗) f (v′)−g(v∗) f (v)
}

dσdv∗ ,

which is well-defined for suitable functionsf andg specified later. Notice that the collision
operatorQ(· , ·) acts only on the velocity variablev∈ R3. In the following discussion, we
will use theσ−representation, that is, forσ ∈ S2,

v′ =
v+v∗

2
+

|v−v∗|
2

σ , v′∗ =
v+v∗

2
− |v−v∗|

2
σ ,

which give the relations between the post and pres collisional velocities. The non-negative
cross sectionB(z,σ) depends only on|z| and the scalar productz|z| · σ . In what follows we
assume that it takes the form

B(|v−v∗|,cosθ) = Φ(|v−v∗|)b(cosθ), cosθ =
v−v∗
|v−v∗|

· σ , 0≤ θ ≤ π
2
,

where the angular factorb(cosθ) is assumed to have the following singularity;

(2) sinθ b(cosθ) ≈ Kθ−1−2s, whenθ → 0+,

for 0< s< 1 and a constantK > 0, and the kinetic factorΦ = Φγ is given by

(3) Φγ(|v−v∗|) = |v−v∗|γ ,
1
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for someγ > max{−3,−3/2− 2s}. If the inter-molecule potential satisfies the inverse
power law potentialU(ρ) = ρ−(q−1),q> 2 (, whereρ denotes the distance between two
interacting molecules), then

Φ(|v−v∗|) = |v−v∗|(q−5)/(q−1) and

sinθ b(cosθ) ≈ Kθ−1−2s asθ → 0,

whereK > 0 and 0< s= 1/(q−1)< 1. Namely, for this physical case, we have

γ =
q−5
q−1

= 1−4
1

q−1
= 1−4s

which is contained in our assumptions 0< s< 1 andγ > max{−3,−3/2−2s}.

γ

s
1

1/2

3/4

-3

-2

-3/2

2

1

FIGURE 1. (s,γ)

We use the usual function spaces as follows: Forp≥ 1 andβ ∈ R, we set

∥ f∥Lp
β
=

(∫
R3

|⟨v⟩β f (v)|pdv

)1/p

,

and fors∈ R
∥ f∥Hs

β (R
3
v)
=
(∫

R3
|⟨Dv⟩s(⟨v⟩β f (v)

)
|2dv

)1/2
.

Furthermore

∥ f∥Hs
β (R

6
x,v)

=
(∫

R6
|⟨Dx,Dv⟩s(⟨v⟩β f (x,v)

)
|2dvdx

)1/2
.

For the uniqueness of solution, we first consider the function space with polynomial
decay in the velocity variable. Form∈ R andℓ≥ 0 , set

P̃m,ℓ
0 (R6

x,v) =
{

g∈ D ′(R6
x,v); g∈ L∞(R3

x;Hm
ℓ (R

3
v))

}
,

and forT > 0

P̃m,ℓ([0,T]×R6
x,v) =

{
f ∈C0([0,T];D ′(R6

x,v));

s.t. f ∈ L∞([0,T]×R3
x; Hm

ℓ (R
3
v))

}
.
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Our first theorem concerns the uniqueness of solution for the caseγ ≤ 0, which is called
soft potential casein the classical sense andMaxwellian molecule type.

Theorem 1. Assume that0< s< 1 and

max
(
−3,−3/2−2s

)
<γ ≤0.

Let 0 < T < +∞ and letℓ0 ≥ 7. Suppose that the Cauchy problem(1) admits two solu-
tions f1(t), f2(t) ∈ P̃2s,ℓ0([0,T]×R6

x,v) for the same initial datum f0 ∈ P̃0,0
0 (R6

x,v). If one
solution is non-negative then f1(t)≡ f2(t).

For the uniqueness of solution in the caseγ > 0, we consider the function space with
exponential decay in the velocity variable. More precisely, form∈ R, set

Ẽ m
0 (R6) =

{
g∈ D ′(R6

x,v); ∃ρ0 > 0 s.t. eρ0⟨v⟩2g∈ L∞(R3
x;Hm(R3

v))
}
,

and forT > 0

Ẽ m([0,T]×R6
x,v) =

{
f ∈C0([0,T];D ′(R6

x,v)); ∃ρ > 0

s.t. eρ⟨v⟩2 f ∈ L∞([0,T]×R3
x; Hm(R3

v))
}
.

Theorem 2. Assume that0< s< 1 and

max
(
−3,−3/2−2s

)
<γ< 2−2s.

Let0<T <+∞ and suppose that the Cauchy problem(1)admits two solutions f1(t), f2(t)∈
Ẽ 2s([0,T]×R6

x,v) for the same initial datum f0 ∈ Ẽ 0
0 (R6). If one solution is non-negative

then f1(t)≡ f2(t).

In the above theorem we can relax the assumptions of the regularity index 2s and the
non-negativity on solutions.

Theorem 3. Assume that0< s< 1 and

max
(
−3,−3/2−2s

)
<γ< 2−2s.

Suppose that the Cauchy problem(1) admits two solutions f1(t), f2(t) ∈ Ẽ s([0,T]×R6
x,v)

for the same initial datum f0 ∈ Ẽ 0
0 (R6).

(I) If f1(t) ≥ 0 and if there exist c0,C > 0 independent of t∈]0,T[ such that the coercive
estimate

−(Q( f1(t),h),h)L2(R6) ≥ c0∥h∥2
L2(R3

x;Hs
γ/2)

−C∥h∥2
L2(R3

x;L2
(s+γ/2)+

(R3
v))

(4)

holds for any h∈ S ∞(R6), then f1(t)≡ f2(t).
(II) The same conclusion as in(I) holds without the non-negativity of f1(t) if f1(t) satisfies
the following strong coercive estimate

−(Q( f1(t),h),h)L2(R6) ≥ c0

∫
|||h|||2Φγ dx−C∥h∥2

L2(R3
x;L2

(s+γ/2)+
(R3

v))
.(5)

As for the terminology of thestrongcoercive estimate in the above theorem we notice
that

∥g∥2
L2

s+γ/2
+∥g∥2

Hs
γ/2

. |||g|||2Φγ . ∥g∥2
Hs

s+γ/2
.
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Here

|||g|||2Φγ =
∫

b(cosθ)Φγ(|v−v∗|)µ∗(g
′−g)2dvdv∗dσ

+
∫

bΦγ(|v−v∗|)g2
∗(
√

µ ′−
√

µ)2dvdv∗dσ

= J1(g)+J2(g) ,

∥g∥2
Hs

γ/2
. J1(g)+∥g∥2

L2
s+γ/2

. ∥g∥2
Hs

s+γ/2
, J2(g)∼ ∥g∥L2

s+γ/2
.

The caseγ + 2s≥ 2 is out of the physical case coming from the inverse power law
potential (see the figure below).

FIGURE 2. (s,γ)

However, the uniqueness of solutions holds also in the caseγ + 2s≥ 2 if we con-
fine ourselves to the solution which is the perturbation around a normalized Maxwellian
distributionµ(v) = e−|v|2/2/(2π)3/2, that is,

f = µ +µ1/2g̃.

Theorem 4. Assume that0< s< 1 andγ+2s≥ 2. Let ℓ1 > 3/2+γ+2s. Then there exists
an ε0 > 0 satisfying the following: Let f1(t), f2(t) ∈ Ẽ s([0,T]×R6

x,v) be two solutions of
the Cauchy problem(1) and satisfy

µ−1/2( f j(t)−µ
)
∈ L∞([0,T]×R3

x;Hs
ℓ1
) , j = 1,2.

If ∥µ−1/2
(

f1(t)−µ
)
∥L∞([0,T]×R3

x;L2(R3
v))

< ε0 then f1(t)≡ f2(t) for all t ∈ [0,T].
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In the caseγ +2s≤ 0 we can refine the second part (II) of Theorem 3, that is, we can
consider the uniqueness in another function space

B̃s([0,T]×R6
x,v) =

{
f ∈C0([0,T];D ′(R6

x,v)); ∃ρ > 0

s.t. eρ⟨v⟩2 f ∈ L∞([0,T]×R3
x;L2(R3

v))∩L2([0,T]; L∞(R3
x;Hs(R3

v)))
}
,

which is wider than

Ẽ s([0,T]×R6
x,v) =

{
f ∈C0([0,T];D ′(R6

x,v)); ∃ρ > 0

s.t. eρ⟨v⟩2 f ∈ L∞([0,T]×R3
x; Hs(R3

v))
}
.

Theorem 5. Assume that0< s< 1 and

max
(
−3,−3/2−2s

)
<γ≤−2s.

Let 0 < T < +∞ and suppose that f1(t) ∈ B̃s([0,T]×R6
x,v) is a solution to the Cauchy

problem (1) satisfying the strong coercive estimate(5). Then f1(t) coincides with any
another solution f2(t) ∈ B̃s([0,T]×R6

x,v).

2. UNIQUENESS OF KNOWN SOLUTIONS

Theorems announced in the preceding section are applicable to show the uniqueness of
known solutions given in [5, 6, 8] in the wider spaces than those where they are constructed.
Uniqueness of global solutions for small initial data
• If γ +2s> 0, 0< s< 1 and if∥g̃0∥Hk

ℓ1
(R6) ( k ≥ 6, ℓ1 > 3/2+2s+ γ) is small enough

then (see [6]) the Cauchy problem (1) with the initial datumµ +
√µ g̃0 admits a global

solution f1(t) of the form µ +
√µ g̃(t,x,v) with g̃ ∈ L∞([0,∞[;Hk

ℓ1
(R6)) and its norm

∥g̃∥L∞([0,∞[;Hk
ℓ1
(R6)) small. Furthermore thisf1(t) satisfies the strong coercive estimate (5).

The part (II) of Theorem 3 shows the uniqueness off1(t) in the function spacẽE s([0,T]×
R6

x,v) for anyT > 0, provided thatγ +2s< 2.

Ẽ s([0,T]×R6
x,v) =

{
f ∈C0([0,T];D ′(R6

x,v)); ∃ρ > 0

s.t. eρ⟨v⟩2 f ∈ L∞([0,T]×R3
x; Hs(R3

v))
}
.

When γ + 2s≥ 2, Theorem 4 showsf1(t) coincides with another solution of the form
µ +

√µ g̃(t,x,v) with g̃∈ L∞([0,∞[;Hs
ℓ1
(R6)).

• If max(−3,−3/2−2s)< γ ≤−2s and 0< s< 1 then (see [5]) a global solution is given
of the formµ +

√µg̃ with

g̃(t,x,v) ∈ L∞([0,∞[;H̃ N
ℓ (R6

x,v)) , N ≥ 6, ℓ≥ N

where

H̃ N
ℓ (R6

x,v)) = { f ∈ S ′(R6
x,v) ; ∥ f∥H̃ N

ℓ (R6
x,v)

= ∑
|α+β |≤N

∥⟨v⟩|s+γ/2|(ℓ−|β |)∂ α
x ∂ β

v f∥L2(R6) < ∞} ,

provided that the initial datumf0(x,v)= µ+
√µ g̃0(x,v) and∥g̃0∥H̃ N

ℓ (R6
x,v)

is small enough.

Since∥g̃(t)∥H̃ N
ℓ (R6

x,v)
is small, the solutionf1(t) = µ +

√µ g̃(t,x,v) satisfies also the strong
coercive estimate (5) and hence (II) of Theorem 3 shows the uniqueness of the solution in
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Ẽ s([0,T]×R6
x,v). If the initial datum f0 ≥ 0 then Theorem 1 yields the uniqueness in the

spaceP̃2s,ℓ0([0,T]×R6
x,v).

• When max(−3,−3/2−2s) < γ ≤ −2s and 0< s< 1, we have another typeglobal
solution of the formµ +

√µ g̃ with

g̃(t,x,v) ∈L∞([0,∞[;HN(R3
x;L2(R3

v)))

∩L2
ℓoc([0,∞[;HN(R3

x;Hs(R3
v))) , N ≥ 3

if the initial datum f0(x,v) = µ +
√µg̃0(x,v) and∥g̃0∥HN(R3

x;L2(R3
v))

is small enough (see

[5]). By the Sobolev embedding, the solutionf1(t) = µ +
√µ g̃(t) belongs toB̃s([0,T]×

R6
x,v) for anyT > 0. Since the smallness of

∥g̃∥L∞([0,∞[×R3
x;L2(R3

v))
implies the strong coercive estimate (5), the solutionf1(t) is unique

in B̃s([0,T]×R6
x,v) for anyT > 0, by means of Theorem 5.

Uniqueness of local solutions for non-small initial data
• Suppose that−3/2 < γ < 1− 2s and 0< s< 1/2. In [8], bounded solutions of the
Boltzmann equation in the whole space have been constructed without specifying any limit
behaviors at the spatial infinity and without assuming the smallness condition on initial
data. More precisely, it has been shown that if the initial datum is non-negative and belongs
to a uniformly local Sobolev space

Hk
ul(R

6) = {g | ∥g∥2
Hk

ul(R6)

= ∑
|α+β |≤k

sup
a∈R3

∫
R6

|φ1(x−a)∂ α
x ∂ β

v g(x,v)|2dxdv<+∞}.

with the Maxwellian decay property in the velocity variable, then the Cauchy problem
of the Boltzmann equation possesses a non-negative local solution in the same function
space. Since solutions there are non-negative and belong toP2s,ℓ0([0,T]×R6

x,v), Theorem
1 shows their uniqueness whenγ ≤ 0. For the caseγ > 0,Theorem 2 is applicable.

3. SINGULAR CHANGE OF VARIABLES AND PROOF OFTHEOREM 1

In this section we explain the key point of the proof of Theorem 1. Differing from
Theorems 2-5 where some power of the Maxwellian weight, that is,e−ρ|v|2,ρ > 0, absorbs
the moments⟨v⟩ in getting the favorable estimates (see [7]), we need more precise estima-
tions in the proof of Theorem 1, by using the singular change of the variables in pres-post
collisional velocity introduced in [10] as follows:

v∗ 7→ v′ =
v+v∗

2
+

|v−v∗|
2

σ ,

where the Jacobian is computed as∣∣∣∂v∗
∂v′

∣∣∣= 8∣∣∣I −k ⊗σ
∣∣∣ = 8

|1−k ·σ |
=

4

sin2(θ/2)
≥ 16θ−2, θ ∈ [0,π/2].

After this change of variables,k = (v−v∗)/|v−v∗| is a function ofv,v′,σ , so thatθ plays
no longer the role of polar angle. In fact, ”polek” moves withσ and hence the measuredσ
is no longer given by sinθdθdφ .Hence we need a new pole, independent ofσ . A possible
choice is nowk′′ = (v′−v)/|v′−v|, for which the polar angleψ defined by cosψ = k′′ ·σ
satisfies,

ψ =
π
2
− θ

2
, dσ = sinψdψdφ , ψ ∈ [

π
4
,

π
2
].
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The total singularity arising fromb(cosθ)dσ becomesθ−2−2−2s, which is bigger than (2)
(see Figure 3 below).

FIGURE 3. pres-post collisional velocities

For the proof of the uniqueness, we setϕ(v,x) = (1+ |v|2+ |x|2)α/2 and

Wϕ ,ℓ =
⟨v⟩ℓ

ϕ(v,x)
=

(1+ |v|2)ℓ/2

(1+ |v|2+ |x|2)α/2
, α > 3/2.

SetF = f1− f2. Then it follows from (1) that

(6)

{
Ft +v·∇xF = Q( f1, F)+Q(F, f2) ,
F |t=0 = 0.

Let S(τ) ∈C∞
0 (R) satisfy 0≤ S≤ 1 and

S(τ) = 1, |τ| ≤ 1 ; S(τ) = 0, |τ| ≥ 2.

SetSN(Dx) =S(2−2N|Dx|2) and multiplyWϕ ,l SN(Dx)
2Wϕ,l F by (6). Integrating and letting

N → ∞, we have

1
2

d
dt
∥Wϕ ,l F(t)∥2

L2(R6)
=
(
Wϕ ,l Q( f1, F)+Wϕ ,l Q(F, f2) ,Wϕ ,l F

)
L2(R6)

− (v·∇x(ϕ−1)Wl F,Wϕ,l F)L2(R6),

because(v ·∇xSN(Dx)Wϕ ,l F,SN(Dx)Wϕ ,l F)L2(R6) = 0. The second term on the right hand

side is estimated by∥Wϕ ,l F∥2
L2(R6)

because

|v·∇x(ϕ−1)|. ϕ−1.
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If f1 ≥ 0 then we have(
Wϕ ,l Q( f1,F) ,Wϕ,l F

)
L2(R6)

. ∥ f1∥L∞(R3
x,H

2s
ℓ+3/2+ε (R

3
v))
∥Wϕ ,l F∥2

L2(R6)
.(7)

On the other hand,(
Wϕ ,l Q(F, f2) ,Wϕ ,l F

)
L2(R6)

. ∥ f2∥L∞(R3
x,H

2s
ℓ+2s(R3

v))
∥Wϕ ,l F(t)∥2

L2(R6)
.(8)

Once we would admit those estimates we could obtain
d
dt
∥Wϕ ,l F(t)∥2

L2(R6)

.
(
∥ f1∥L∞([0,T]×R3

x,H
2s
ℓ+3/2+ε (R

3
v))

+∥ f2∥L∞([0,T]×R3
x,H

2s
ℓ+2s(R3

v))

)
∥Wϕ,l F∥2

L2(R6)
,

which could concludes the proof of Theorem 1.
The first estimate (7) is a consequence of the following two lemmas.

Lemma 6. Let0< s< 1 and let0≥ γ > max{−3,−2s−3/2}. Then we have(
Q( f ,h),h

)
L2(R6)

≤−1
2

∫
D( f ,h)dx+C∥ f∥

L∞(R3
x,H

2s′
3/2+ε (R

3
v))
∥h∥2

L2(R6)
,

where s′ ≥ 0 satisfiesγ +2s′ >−3/2 and s′ < min{s,3/4}. Here

D( f ,h) =
∫∫∫

B f(h−h′)2dvdv∗dσ .

Lemma 7. Let ℓ≥ 6. Then∣∣∣∣((Wϕ ,l Q( f , g)−Q( f , Wϕ ,l g)
)
, h

)
L2(R6)

∣∣∣∣(9)

. ∥ f∥
L∞(R3

x;H(2s−1)+

3/2+ε (R3
v))
∥h∥2

L2(R6)

+
(∫

D(| f |,h)dx
)1/2

∥ f∥1/2
L∞(R3

x;L2
ℓ+3/2+ε (R

3
v))
∥Wϕ,ℓg∥L2(R6).

The second estimate (8) is reduced to(
Wϕ ,l Q( f ,g) , h

)
L2(R3

v)
. ∥g∥H2s

ℓ+2s(R3
v))
∥Wϕ ,l f∥L2(R3

v)
∥h∥L2(R3

v)

if we regardx as a parameter. To prove this estimate, let 0≤ φ(z) ≤ 1 be a smooth radial
function with value 1 forzclose to 0, and 0 for large values ofz. Set

Φγ(z) = Φγ(z)φ(z)+Φγ(z)(1−φ(z)) = Φsing(z)+Φreg(z).

Then we write
Q( f ,g) = Qsing( f ,g)+Qreg( f ,g),

where the kinetic factor in the collision operator is defined according to the decomposition
respectively. In what follows we consider(

Wϕ ,l Qreg( f ,g) , h
)

L2(R3
v)
. ∥g∥H2s

ℓ+2s(R3
v))
∥Wϕ ,l f∥L2(R3)∥h∥L2(R3

v)
,

though the singular partQsing also requires fairly long computations (see [7]). Write(
Wϕ,l Qreg( f , g) , h

)
L2(R3)

=
(

Qreg( f , Wϕ ,l g) , h
)

L2(R3)

+
((

Wϕ ,l Qreg( f , g)−Qreg( f , Wϕ,l g)
)
, h

)
L2(R3)

= A+B.



UNIQUENESS OF SOLUTION FOR NON-CUTOFF BOLTZMANN EQUATION 9

By the upper bound estimate in Theorem 2.1 of [3], we have∫
|A|dx.

∫
∥ f∥L1

(γ+2s)+
(R3

v)
∥Wϕ ,l g∥H2s

(γ+2s)+
(R3

v)
∥h∥L2(R3

v)
dx

.
∫

∥ ϕ
⟨x⟩α

f
ϕ
∥L2

2s+3/2+ε (R
3
v)
∥⟨x⟩

α

ϕ
Wl g∥H2s

(γ+2s)+
(R3

v)
∥h∥L2(R3

v)
dx

. ∥Wϕ ,α f∥L2(R6)∥g∥L∞(R3
x;H2s

l+2s(R3
v))
∥h∥L2(R6).

Here we have usedϕ
⟨x⟩α . ⟨v⟩α . The proof of the second estimate (8) is complete because

we have the following lemma as forB.

Lemma 8. Let ℓ≥ 5. Then∣∣∣∣(Wϕ ,l Qreg( f , g)−Qreg( f , Wϕ ,l g), h
)

L2(R3
v)

∣∣∣∣
. ∥Wϕ ,l f∥L2(R3

v)
∥g∥Hs

l+s(R3
v)
∥h∥L2(R3

v)
.

Proof. Note that (
Wϕ ,l Qreg( f , g)−Qreg( f , Wϕ ,l g), h

)
L2(R3

v)

=
∫∫∫

bΦreg

((
Wϕ ,l

)′− (
Wϕ ,l

))
f∗gh′dvdv∗dσ ,

∣∣∣Wϕ ,l −W′
ϕ ,l −

(
∇vWϕ,l

)
(v′) · (v−v′)

∣∣∣
=

∣∣∣∣∫ 1

0
τ∇2Wϕ ,l (v+ τ(v′−v))dτ(v−v′)2

∣∣∣∣
. sin2

(
θ
2

)
Wl +Wl−2−αW2+α,∗

ϕ(v∗,x)
+sinl−α

(
θ
2

)
Wl ,∗

ϕ(v∗,x)
. θ 2WlWϕ ,2+α ,∗+θ l−αWϕ,l ,∗,

whereWϕ ,l ,∗ =
Wl ,∗

ϕ(v∗,x)
. We consider the second order term in the Taylor expansion∫∫∫

bθ 2|
(
Wϕ ,2+α f

)
∗||
(
Wℓg

)
||h′|dvdv∗dσ

+
∫∫∫

bθ ℓ−2
∣∣(Wϕ,ℓ f

)
∗
∣∣|gh′|dvdv∗dσ

=M1+M2 .

By the Cauchy-Schwarz inequality we get

|M1|2 .
∫∫∫

bθ 2
∣∣(Wϕ,2+α f

)
∗
∣∣(Wℓg

)2
dvdv∗dσ

×
∫∫∫

bθ 2
∣∣(Wϕ ,2+α f

)
∗
∣∣(h′)2dvdv∗dσ

. ∥Wϕ ,2+α f∥2
L1(R3

v)
∥g∥2

L2
ℓ (R3

v)
∥h∥2

L2(R3
v)
.

Here we used the regular change of variable

v→ v′ =
v+v∗

2
+

|v−v∗|
2

σ ,
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whose Jacobian∣∣∣ ∂v
∂v′

∣∣∣= 8∣∣∣I +k ⊗σ
∣∣∣ = 8

|1+k ·σ |
= 4/cos2(θ/2)≤ 8.

By the Cauchy-Schwarz inequality again we have

|M2|2 .
(∫∫∫

bθ ℓ−α−3/2|g|
(
Wϕ,ℓ f

)2
∗dv∗dvdσ

)
×
(∫∫∫

bθ ℓ−α+3/2|g||h′|2dv∗dvdσ
)

. ∥g∥2
L1(R3

v)
∥Wϕ,ℓ f∥2

L2(R3
v)
∥h∥2

L2(R3
v)
.

if we chooseℓ so that

ℓ−α −3/2−1−2s= ℓ−α +3/2−(2+2s+2)>−1.

Here we have used singular change of variablesv∗ → v′ whose Jacobian∣∣∣∂v∗
∂v′

∣∣∣= 4

sin2(θ/2)

and the fact that the total angular singularity of the second factor isθ−(2+2s+2). The first
order term of the Taylor expansion can be estimated by using the symmetry property on
theS2. The detail is omitted (see [9]). �
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