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ABSTRACT. In this note we consider the uniqueness of solution to the Cauchy problem
for non-cutoff Boltzmann equation in the whole space. Several results in different function
spaces are detailed in the cases of hard and soft potentials. In particular, we discuss the
uniqueness of the solution with the polynomial decay with respect to the velocity variable,
in the soft potential case of the classical sense, where the singular change of variables from
“pres” to “post ” collisional velocity plays an important role.

1. INTRODUCTION AND UNIQUENESS RESULTS
We consider the Cauchy problem for the spatially inhomogeneous Boltzmann equation,

1 of+v-Of =Q(f,f), xvER®, t>0,
( ) f(O,X,V) = fO(X7V)7 ]

wheref = f(t,v) is the density distribution function of particles with positioeg R® and
velocity v € R? at timet. The right hand side of (1) is given by the Boltzmann bilinear
collision operator

Q.0 = [, [,BO—v..0) {gV))f(V) ~g(v.) 1(v)} dod..

which is well-defined for suitable functiorfsandg specified later. Notice that the collision
operatorQ(-, -) acts only on the velocity variablec R3. In the following discussion, we
will use theo —representation, that is, far € S?,

V4V, V=V v Ve vy
2 2 T 2 2
which give the relations between the post and pres collisional velocities. The non-negative
cross sectioB(z, o) depends only ofg| and the scalar produ% - 0. In what follows we

assume that it takes the form

V=

g,

B(|v—V.|,cos0) = ®(|v—v,|)b(cosh), cosd = |X:X*| -0,0<0< ;

where the angular factdx(cosf) is assumed to have the following singularity;

2) sin@ b(cosf) ~ KO 1% when@ — 0+,

for 0 <s< 1 and a constarK > 0, and the kinetic facto = ®,, is given by

®) Py (v =vi]) = V=",
1
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for somey > max{—3,—3/2— 2s}. If the inter-molecule potential satisfies the inverse
power law potentialU (p) = p~ (@1 q> 2 (, wherep denotes the distance between two
interacting molecules), then

(V- V.|) = [v—v,|@3/@1) and

sinfb(cosh) ~ KO 172 as@ — 0,
whereK > 0 and 0< s=1/(g— 1) < 1. Namely, for this physical case, we have

B T S
y_q_l_l 4q_1_1 4s

which is contained in our assumptionsG < 1 andy > max{—3,—3/2 — 2s}.
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FIGURE L. (s,y)

We use the usual function spaces as follows: rorl andg € R, we set

Ifllp = (43<v>ﬁf<v>|9dv)l/p7

Flhigcesy = ([ ,100(007 1(v) Fav)

and forse R
1/2

Furthermore 12
IFllsg e,y = /|DX,DV V)P £ (x.v)) Zdvdx)

For the uniqueness of solution, we first consider the function space with polynomial
decay in the velocity variable. Fonc R and/ > 0, set

Fy(RE,) = {g € 7'(R},); g€ L (R HI" <R3)>}
and forT >0
FMOTI xRS = {1 eCAD.ThEY )

st. f e L2([0, T] x R; H?‘(Ri))}.
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Our first theorem concerns the uniqueness of solution for thecase, which is called
soft potential casén the classical sense aibxwellian molecule type.

Theorem 1. Assume thad < s< 1 and
max( —3, —3/2—2s)<y<0.

LetO < T < +o and letly > 7. Suppose that the Cauchy probléf) admits two solu-
tions fi(t), f2(t) € 925/0([0, T] x RS, ) for the same initial datumofe F5°(RS,). If one
solution is non-negative then (f) = fa(t).

For the uniqueness of solution in the case 0, we consider the function space with
exponential decay in the velocity variable. More preciselynfict R, set

N (R®) = {ge 7' (RS,); 3p0 > 0st. g e L*(REHM(RD)) },
and forT >0
EM[0,TIxRE,) = {feC0,T;2/(RE,);3p >0
st. M f e L2(0, T] x R; Hm(Re))}.
Theorem 2. Assume thad < s< 1 and
max(—3,-3/2—2s)<y< 2—2s.

LetO < T < 4= and suppose that the Cauchy problgpadmits two solutions, ft), f(t) €
&25(10,T] x RE,) for the same initial datumofe &9 (IR). If one solution is non-negative

then fi(t) = fo(t).
In the above theorem we can relax the assumptions of the regularity iscend2he
non-negativity on solutions.
Theorem 3. Assume thad < s< 1 and
max(—3,-3/2—2s)<y< 2—2s.

Suppose that the Cauchy probléh) admits two solutions:ft), fo(t) € &5([0,T] x RS,)
for the same initial datumofe £9(R®).

() If f1(t) > 0and if there exist & C > 0 independent of £]0, T| such that the coercive
estimate

(4) _(Q( fl(t)a h) h)Lz(]R6 > CO||hH|_2 R$; HS C”hHLZ R3; |_(2 V2t (R3))

holds for any he .7*(RS), then f(t) = fa(t).
(I1) The same conclusion as() holds without the non-negativity of(f) if f1(t) satisfies
the following strong coercive estimate

® QNN Mime > o f IINIE,9CINEsgee s

As for the terminology of thatrongcoercive estimate in the above theorem we notice
that

Hglle 2+||9HH Sllgllle, < Nl
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Here
i3, = | bleosd)dy(|v—v. p. (g~ g)dvdudo
+ [0, (v v )(VE Vi dvdudo
=J1(9) +3(9).

2. <3 2, <g|l3 Jo(g) ~ .
lallis, = 1(9)+||9H|_§+V/2 < llgllig,, - J2(9) H9|||_§+y/2

The casey+ 2s > 2 is out of the physical case coming from the inverse power law
potential (see the figure below).

-3/2
-2

FIGURE 2. (s,Y)

However, the uniqueness of solutions holds also in the case?s > 2 if we con-
fine ourselves to the solution which is the perturbation around a normalized Maxwellian
distributionpi(v) = e~M*/2/(2m)3/2, that is,

f = p+ pt%g.

Theorem 4. Assume thad < s< landy+2s> 2. Let {1 > 3/2+y+2s. Then there exists
an g > 0 satisfying the following: Letift), fo(t) € £5(]0,T] x RE’V) be two solutions of
the Cauchy probler(il) and satisfy

pTY2(6(0) - p) L0 T xREHS), j=1,2.

If ||u71/2(f1(t) - IJ) ||L°°([0,T]><R§;L2(]R§)) < 80 then ﬁ_(t) = fz(t) fOI’ a“ t € [O,T]
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In the casey -+ 2s < 0 we can refine the second part (II) of Theorem 3, that is, we can
consider the uniqueness in another function space

F([0, T xRS,) = { f €CO0, T 7/ (RE,)); 3p > 0
st. €M’ f € L2(]0, T] x R LA(R3))NL2([0, T]; L™ (RS, HS(RS’)))},

which is wider than
F(0.TIxRE,) = {feC0T] 7 (RE,):3p >0

st. M f e L2([0,T] x RS; HS(R§>)}~

Theorem 5. Assume thad < s< 1and
max(—3,-3/2—2s)<y< —2s.
Let0 < T < +w and suppose thaty ft) € %50, T] x RS, is a solution to the Cauchy

problem (1) satisfying the strong coercive estimdt). Then {(t) coincides with any
another solution £(t) € #5([0,T] x RS,).

2. UNIQUENESS OF KNOWN SOLUTIONS

Theorems announced in the preceding section are applicable to show the uniqueness of
known solutions givenin [5, 6, 8] in the wider spaces than those where they are constructed.
Uniqueness of global solutions for small initial data
olf y+25>0,0<s<1and if||@o\|H}<1(Re) (k> 6,01 > 3/2+ 2s+y) is small enough

then (see [6]) the Cauchy problem (1) with the initial datpm- ,/Li§o admits a global

solution fy(t) of the form p + /Hg(t,x,v) with § € L™([0,e0[;Hf (R®)) and its norm

||g||Lm([O wof;HK (RS)) small. Furthermore thi$; (t) satisfies the strong coercive estimate (5).
T

The part (Il) of Theorem 3 shows the uniquenes§ @) in the function spacéas([o, T] %
Rgv) foranyT > 0, provided thay+ 2s < 2.
F(0TIxRE,) = {feC(0T]7/(RE,):3p >0
st. M f € L2(0, T] x R; HS(RE))}.

Wheny+ 2s > 2, Theorem 4 shows;(t) coincides with another solution of the form
4 /AG(t, x,V) with § € L™([0,00[;H (R®)).

e Ifmax(—3,—-3/2—2s) < y< —2s and 0< s< 1 then (see [5]) a global solution is given
of the formpu 4 /g with

g(t.xv) € L([0,0 AN (RY,)), N=6, £=N
where |
ANRL) = {1t € /BRI fllonas,)
= N0 e < ),
la+B]<N
provided that the initial daturfy(x, v) = u +/Hfo(X,V) anngo\\j@N(Rgv) is small enough.

Since||d(t) HQ%?%N(RQV) is small, the solutiorfy (t) = u + /Hd(t, x,v) satisfies also the strong
coercive estimate (5) and hence (Il) of Theorem 3 shows the uniqueness of the solution in
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&5([0,T] x RQV). If the initial datum fy > 0 then Theorem 1 yields the uniqueness in the
space??5/0([0,T] x R,).

e When max—3,—-3/2—2s) < y < —2s and 0< s< 1, we have another typeglobal
solution of the formu + /g with

§(t,x,v) €L”([0,00[; HN (R5; LA(RY)))
NLfoc( [0, HY (R HA(RY))), N >3

if the initial datumfo(x,v) = pt + /HGo(X,V) and |[Go||yn r3.L2(r3)) is small enough (see
[5]). By the Sobolev embedding, the solutiéf(t) = u+ /Hd(t) belongs toA>([0, T] x
RQV) foranyT > 0. Since the smallness of
[1GllLe(j0.00[ x R3;L2(R3)) IMPlies the strong coercive estimate (5), the solutig(t) is unique
in 225(0, T] x RS’V) foranyT > 0, by means of Theorem 5.
Uniqueness of local solutions for non-small initial data
e Suppose that-3/2 < y < 1—2sand 0< s< 1/2. In [8], bounded solutions of the
Boltzmann equation in the whole space have been constructed without specifying any limit
behaviors at the spatial infinity and without assuming the smallness condition on initial

data. More precisely, it has been shown that if the initial datum is non-negative and belongs
to a uniformly local Sobolev space

H(R®) = (9 | l0l2 e

= 5 sup [ [¢u(x—a)37afg(x,V)|*dxdv< +}.
ja-Bl<k acr3/R®
with the Maxwellian decay property in the velocity variable, then the Cauchy problem
of the Boltzmann equation possesses a non-negative local solution in the same function
space. Since solutions there are non-negative and belogté° ([0, ] x RS, ), Theorem
1 shows their uniqueness whgr< 0. For the casg > 0,Theorem 2 is applicable.

3. SNGULAR CHANGE OF VARIABLES AND PROOF OFTHEOREM 1

In this section we explain the key point of the proof of Theorem 1. Differing from
Theorems 2-5 where some power of the Maxwellian weight, that &Y, p > 0, absorbs
the momentgv) in getting the favorable estimates (see [7]), we need more precise estima-
tions in the proof of Theorem 1, by using the singular change of the variables in pres-post
collisional velocity introduced in [10] as follows:

VAV IV—V,|
2 2

V. —V = g,

where the Jacobian is computed as
v, 8 B 8 B 4
ov ’I—k@a’ l1-k-o| sir?(6/2)

> 16072, 6¢[0,1m/2).

After this change of variablek,= (v—v.)/|v—v.| is a function ofv,V, g, so thatf plays
no longer the role of polar angle. In fact, "pd&moves witho and hence the measute
is no longer given by sild6dg.Hence we need a new pole, independerda of possible
choice is nowk” = (V —v)/|V — v, for which the polar anglg defined by cogy =k” - o
satisfies,

T 0 ) T TT
L‘Uziif’ do = singdyde, WE[}E]-
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The total singularity arising frorb(cos8)do becomes®)~2-2-25, which is bigger than (2)
(see Figure 3 below).

FIGURE 3. pres-post collisional velocities

For the proof of the uniqueness, we §gt,x) = (1+ |v|?+|x|?)?/2 and
M AR
W ) = = , a>3/2.
PO T (L VR NR)e /
SetF = f1 — f,. Then it follows from (1) that

©) R+v-OxF =Q(f1, F) + Q(F, f2),
Flo=0.

Let (1) € C5(R) satisfy 0< S< 1 and
ST)=1, |1/<1; S(1)=0, [1[>2

SetSy(Dx) = S(2-2V|Dy|?) and multiplyWy | Su(Dx)?Wy | F by (6). Integrating and letting
N — o, we have
1d
2dt

W 1 F ()1172 ) = (W¢,| Q(f1, F) +Ws,1 Q(F, f2) Wy F) .

— (V- Ox(§~H)WF, Wp 1 F) 2(ps)

becausev- UxSy(Dx)Wp 1F, Su(Dx)Wp,1F) 2zs) = 0. The second term on the right hand
side is estimated bW, | F Hfz( ) because

v-Ox(¢ IS ot

Z(RG)

R6
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If f; > 0then we have

M (WeaQULF)WoiF) |, o S faliomges, gy IWoaF Poes

2(R®) X" 4+3/2+€

On the other hand,

®) (er,lQ(F, fz),er,lF)Lz(R S el Lo rg iz, may) IWo  F (0 2z -
Once we would admit those estimates we could obtain

d

W F (O F2(c

2
(R3) + f2||L°°([O,T]xR3 H2 ))) [We.1 F||L2(R6) ’

S (||f1||L°°([O.T]xR3 H2s 25 (

1+3/2+¢

which could concludes the proof of Theorem 1.
The first estimate (7) is a consequence of the following two lemmas.

Lemma 6. LetO < s< 1and let0 > y > max{—3, —2s— 3/2}. Then we have
() g < —5 [ 7 mdeictll o L [y
where § > 0 satisfiesy+ 28’ > —3/2 and $ < min{s,3/4}. Here
@(f,h):// Bf(h—H)2dvdv.do.
Lemma 7. Let{ > 6. Then
©) ‘((w¢,| QT 9~ QT Wy ). )

S

L2(IR6)

s LS

1/2
(200000 U g sy Mol
The second estimate (8) is reduced to
(W¢,|Q(f,g), h)

if we regardx as a parameter. To prove this estimate, let ®(z) < 1 be a smooth radial
function with value 1 forz close to 0, and 0O for large values ofSet

Dy(2) = Py (2)P(2) + Py(2) (1 - 9(2)) = Psing(2) + Preg(2)-
Then we write

L2(R3) S Hg”H[ZiZS(Ré)) W1 fllL2mg) lIDll2(rg)

Q(f7g> = Qsing(fyg) + Qreg(f7g)7
where the kinetic factor in the collision operator is defined according to the decomposition
respectively. In what follows we consider

(W¢,I Qreg( f ) g) s h)

though the singular pa@sing also requires fairly long computations (see [7]). Write

(er,l Qreg(fv 9), h) L2(R?) = (Qreg(f7 W | 9), h)

+ ((W‘PJ Qreg(f, 9) — Qreg(f, Wy, g))7 h) @) =A+B.

L2(R3) S H9||H[2‘§25(R§)) Wi .1 f||L2(R3)Hh||L2(R3) )

L2(R3)
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By the upper bound estimate in Theorem 2.1 of [3], we have
[ Aaxs [t - ) W 1Glzs 3 Iz i

S [l gt 0, Walle: e Iz O
S \|W¢.,af|||_2 RS) ||9||Lw(R§;H,ZjZS<R§))Hh|||_2(R6>~

Here we have usegf;—a < (W)?. The proof of the second estimate (8) is complete because
we have the following lemma as f&:

Lemma 8. Let/ > 5. Then

‘(Wq),l Qreg(f, 9) — Qreg(f, Wy, 9), h)

S (Wi f||L2(R§)||9||H|iS(R§) IhllL2(rg)-

L2(R3)

Proof. Note that

(Wq),l Qreg(f, 9) — Qreg(f, Wp1 9), h) L2(R3)

- /// b¢reg<(W¢,| ) — (W¢,|)) f.ghdvdvdo,

Wos = W3, = (CWp, ) (V) (V=)
= | [ T T (- v)2

W +W_2_gWoyq« 1_a (O W .
<S'”2< ) v Ton (2) Y

< OAWMWp 21q .+ 6 OWp .,

whereWy | . We consider the second order term in the Taylor expansion

_ W .

O (Ve,x)”
J][68%1(Wo2-a 1), I (Wig) I dvaudo
+///b9“\(w(,,,ef)*“gmdvd\mo

=M1+ M.
By the Cauchy-Schwarz inequality we get

|M1‘25///b92|(W¢32+af)*|(VVe9)2dvd\4do
x// b6?|(Wp 244 f), | () ?dvdvdo
< W 21 FlIF g, Hglle w2 eg) -

Here we used the regular change of variable

V4V, n |V — V| o

Vv =
V— 5 5 ,
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whose Jacobian
ov 8 8
‘W‘: ‘I+k®a‘ T 1tk g

=4/cog(0/2) <8.

By the Cauchy-Schwarz inequality again we have

M2 2 < (///b@g‘“‘3/2|g\(W¢’gf)fdv*dvda>
< ( ///'beffa+3/2|g|\h’|2dv*dvda)

< 11012 g Wt 122 3y I 22 g5 -
if we choose’ so that
{—a—-3/2-1-2s=(—a+3/2—(2+25+2) > —1.
Here we have used singular change of variablges+ v whose Jacobian
ov, 4
ov' | sird(6/2)

and the fact that the total angular singularity of the second factr 57252, The first
order term of the Taylor expansion can be estimated by using the symmetry property on
theS?. The detail is omitted (see [9]). O
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