Blow up Phenomena
on the curvature of closed plane elastic curves
with the winding number w > 1
Minoru Murai (Ryukoku University)

Let ©Q be a domain in R? with smooth boundary I'. The length of T’
is equal to 27 and the winding number w > 0. Let s be the arc-length
parameter of I'; k(s) the curvature of I' and M the area of {2 defined by

1
M::—/xdy—ydx (x,y) €T.
2 Jr
We consider the variational problem (V' P): For given w > 0, L > 0 and M
with —7 < M < 7 and wM # 7 , find the curvature x(s) such that the

1 2
functional £(k) := 5/ #(s)ds takes the minimum.
0

The minimizer satisfies the following Euler-Lagrange equation:
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k(0) = k(27), ks(0) = Rs(27),
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where p, v are some constants.

Let us set the start point s = 0 at the maximal point of x(s) and n be a
natural number. FEach k(s) has a primitive period L/n, which is symmetric
in [0,27/n] at s = 7/n, strictly decreasing in (0, 7/n) and strictly increasing
in (w/n,2m7/n) . (We call this solution “ n-mode solution”.)

This problem is first considered by K. Watanabe [4-6] with the winding
number w = 1. M. Murai - W. Matsumoto - S. Yotsutani [1-3] investigated
the global structure of the Euler equation and shapes of its solutions.

We give the shapes of one of 2-mode solutions with the winding number
w = 1 corresponding to amounts M in Figure 1. We give those of the other
2-mode solutions with w = 1 in Figure 2, which are always non-simple.
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Curves by 2-mode solutions with w =1
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Figure 2: Curves by 2-mode solutions with w =1

In this paper, we consider the the blow up phenomena of the curvature
with the winding number w > 1. For example, in the case of the winding
number w = 1 and mode n = 2, we obtain the following theorem.



Theorem. Let w =1 and n = 2. Then, there exists three types of blow up
phenomena:
00 s=0,m,

(i) lim r(s; M) : : .
M|—m -1 s € (0,m) U (m, 27) (uniformly in the wider sense).
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00 s=0,m,
(ii) lei{rTr}r/-i(s;M): 1 s€(0,2)U(%,2) U (3, 2m),
—00 s =Z,3% (uniformly in the wider sense).
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(uniformly in the wider sense).
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