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Abstract

There is an extensive literature on the existence theory of solutions for the Boltzmann
equation. However, as far as the Cauchy problem is concerned, it is noticed that the solutions
developed so far are classified only into three categories from the view point of the limit
behaviors at the spatial infinity, that is, x-periodic solutions (solutions on torus), solutions
vanishing at spatial infinity (solution neafr vacuum), and solutions approaching to equilibrium
at the spatial infinity (perturbative solution of equilibrium). In this note we show other
solutions are possible which have more general spatial limit behaviors.

More precisely we will show that if the initial data is non-negative and belongs to a locally
uniform Sobolev space with respect to x-variable and to a usual Sobolev space with weigh of
Maxwell type decay with respect to v-variable, then the Cauchy problem has a non-negative
unique solution belonging to the same function space, for arbitrarily large initial data and for
both the cutoff and non-cutoff case.

This is a recent joint work with R. Alexandre, Y. Morimoto, C.-J. Xu, and T. Yang. [9].

1 Boltzmann Equation

When there is no external force, the Boltzmann equation takes the form 　

∂f

∂t
+ v · ∇xf = Q(f, f),(1.1)

where f = f(t, x, v) ≥ 0 is the density of gas particles having space position x ∈ R3 and velocity
v ∈ R3 at time t > 0, while the right hand side Q is the Boltzmann bilinear collision operator given
by

Q(g, f) =
∫

R3

∫
S2

B (v − v∗, σ)
(
g(v′

∗)f(v′) − g(v∗)f(v)
)
dσdv∗(1.2)

where
f(v′) = f(t, x, v′) etc.,

and

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′
∗ =

v + v∗
2

− |v − v∗|
2

σ

are the relations between the pre- and post- collisional velocities. σ ∈ S2 is the angular direction
of collision.



In addition to the special bilinear structure of the collision operator, the collision cross-section
B(v − v∗, σ) varies with different physical assumptions on the particle interactions and it plays an
important role in the well-posedness theory for the Boltzmann equation. Actually, it is a function
of only |v − v∗| and θ where

cos θ =
⟨ v − v∗
|v − v∗|

, σ
⟩
, 0 ≤ θ ≤ π

2
,

θ being the collision angle.
Two classical examples of B are, for 3D case;
• hard sphere gas: B = b0|v − v′|, b0 > 0 being a constant
• inverse power law potential r−(p−1), p ∈ (2,∞), where r denotes
the distance between two interacting molecules:

B(v − v∗, σ) = b0|v − v∗|γθ−2−2s, b0 > 0 being a constant,

with
−3 < γ =

p − 5
p − 1

< 1, 0 < s =
1

p − 1
< 1 .

As usual, the hard and soft potentials correspond to p > 5 and 2 < p < 5 respectively, while the
Maxwellian potential corresponds to p = 5.

The collision operator Q behaves quite differently between these two examples. For the hard
sphere model, the cross section B(v − v∗, σ) is a bounded function with respect to θ, and hence Q
is a usual integral operator in v-variable.

On the other hand, the inverse power law potential results in a non-integrable singularity at
θ = 0 which makes Q behave like a pseudo differential operator in v-variable, as pointed out by
many authors, e.g. [2, 19, 22, 26], This had been an obstacle of long standing for the progress of
the mathematical analysis of the Boltzmann equation.

To avoid this difficulty, Grad [14] introduced an assumption to cutoff this singularity by replac-
ing an integrable one. This was a substantial step made in the study of the Boltzmann equation
(1.1) and is now called Grad’s angular cutoff assumption.

One of the main issues in the study of the Boltzmann equaityon is the existence theory of the
solutions. Many authors have developed various methods for constructing local and global solutions
for different situations. Among them, the Cauchy problem has been studied most extensively for
both cutoff and non-cutoff cases. Let us give a brief review of the existence theories developed so
far.

Cutoff approximation

1. L∞-Theory: solution on torus (x-periodic) /near equilibrium
Spectrum analysis+bootstrap argument

Ukai ([24] ’74, [25]’76), Nishida-Imai ([21], ’76), Shizuta-Asano([23], ’78)

2. L1-Theory: Large amplitude solution.
Renormalized solutions+H-theorem

Diperna-Lions([13] ’89), Hamdache (’92) …

3. L2-Theory: Solutions near equilibrium.
Macro-micro decomposition +L2energy method.

Liu-Yang-Yu([20] ’04), Guo([16] ’04)… (L∞ solution· · ·Guo [17])

Non-cutoff case

1. Local solutions in Sobolev space in R3
x × R3

v:
Solutions vanishing at x-infinity ∼ solutions near vacuum.

R. Alexandre - Y.Morimoto - S.U. - C.-J.Xu - T.Yang ([3], 2010)



2. Global solutions approaching equilibrium at x-infinity.
R. Alexandre - Y.Morimoto - S.U. - C.-J.Xu - T.Yang ([?, ?], 2010)

3. Global x-periodic (on torus) solutions
Gressman-Strain ([15],2010)

We now make an essential observation that all the solutions mentioned above satisfy one of the
following three spatial behaviors at infinity;

1. x-periodic (on torus) solutions, [14, 15, 24]),

2. Solutions approaching an equilibrium state at x-infinity ([4, 5, 6, 7, 16, 20, 25]).

3. Solutions near vacuum (solutions vanishing at infinity,) [1, 3, 10, 13]).

Recall that the equilibrium state of the gas is described by the Maxwellian distribution. Without
loss of generarity, we here fix it as a normalized Maxwellian

µ(v) =
1

(2π)3/2
e−

|v|2
2 .

The solution approaching the equilibrium or perturbative solution of equilibrium means the solution
having the form

f(t, x, v) = µ(v) + µ1/2(v)g(t, x, v), g → 0 (|x| → ∞).

µ satisfies Q(µ, µ) = 0 and hence is a stationary solution of the Boltzmann equation.
A natural question arises: Whether or not there exist any solutions behaving differently at

x-infinity. The answer is yes. It is clear that the restriction of the limit behaviors comes from the
function spaces used in the existence proof of solutions: If the proof is carried out in the Sobolev
space on the torus, we obtain periodic solutions, while in the Sobolev space in the whole space,
solutions are those vanishing at infinity, and perturbative solutions of equilibrium are obtained if the
form µ(v) + µ1/2(v)g(t, x, v) with g belonging to the Sobolev space in the whole space is assumed.
Thus it is expected that different function spaces give rise to solutions behaving differently at
infinity. In this note we choose the uniformly local Sobolev space.

Uniformly local Sobolev space
Set

∂α
β = ∂α

x ∂β
v , α, β ∈ N3

and let ϕ1 = ϕ1(x) be a smooth cutoff function

ϕ1 ∈ C∞
0 (R3), 0 ≤ ϕ1(x) ≤ 1, ϕ1(x) =

{
1, |x| ≤ 1,
0, |x| ≥ 2.

Set k ∈ N.
The uniformly local Sobolev space we use in this note is defined by

Hk
ul(R6) = {g | ∥g∥2

Hk
ul (R6)(1.3)

=
∑

|α+β|≤k

sup
a∈R3

∫
R6

|ϕ1(x − a)∂α
β g(x, v)|2dxdv < +∞}.

This space could be defined also with the cutoff function ϕR(x) = ϕ1(x/R) for any R > 0, but the
choice of R is not a matter. The proof is easy and is omitted. The uniformly local Sobolev space
was first introduced by Kato in [18] as a space of functions of x variable, and was used to develop
the local existence theory on the quasi-linear symmetric hyperbolic systems without specifying the
limit behavior at infinity.



This space shares many important properties with the usual Sobolev space such as the Sobolev
embedding. For example

Hk
ul(R3

x × R3
v) ⊂ L∞(R3

x × R3
v) if k > 3.

However, it is clear that Hk
ul(R3

x × R3
v) imposes no limit property at x-infinity.

Actually, we shall focus on the solutions enjoying the weight of Maxwell type decay in v. More
precisely, our space of initial data is, with ⟨v⟩ = (1 + |v|2)1/2,

Ek
0 (R6) =

{
g ∈ D′(R6

x,v); ∃ ρ0 > 0 s.t. eρ0<v>2
g ∈ Hk

ul(R6
x,v)

}
,

while the space of solutions will be, for T > 0,

Ek([0, T ] × R6
x,v) =

{
f ∈ C0([0, T ];D′(R6

x,v)); ∃ ρ > 0

s.t. eρ⟨v⟩2f ∈ C0([0, T ]; Hk
ul(R6

x,v))
}

.

The method of proof developed here works for local existence theory. The global existence in
the same solution spaces is a big open issue and is our current subject. Also the present method
works for the Landau equation but since the extension is straightforward, the detail is omitted.

Cutoff and non-cutoff assumption
In this note we assume that B behaves like a non-cutoff principal part of the inverse power law

potential case,

B(v − v∗, σ) = Φ(|v − v∗|)b(cos θ),(1.4)
Φ(|v − v∗|) = Φγ(|v − v∗|) = |v − v∗|γ , γ ∈ (−3, 1),

b(cos θ) ≈ Kθ−2−2s when θ → 0+, s ∈ (0, 1),

for some constant K > 0. It is know that this assumption captures essential features of the inverse
power law potential case. γ > 0, = 0, and < 0 are for the hard, Maxwellian, and soft, potential
cases, respectively.

For the cutoff case we replace b by a bounded function

bε(cos θ) =
{

b(cos θ) θ > ε,
b(cos ε) θ < ε,

where ε is any small positive number.
In the sequel we mainly consider the non-cutoff case because the computation is almost the

same for the cutoff case.

2 Main Result

Our existence result is stated as follows.

Theorem 2.1 Assume the condition (1.4) on the cross section B with 0 < s < 1/2, γ > −3/2
and 2s+ γ < 1. If the initial data f0 is non-negative and belongs to the function space Ek0

0 (R6) for
some k0 ∈ N, k0 ≥ 4, then, there exists T∗ > 0 such that the Cauchy problem{

ft + v · ∇xf = Q(f, f),
f |t=0 = f0(x, v),(2.5)

admits a non-negative unique solution in the function space Ek0([0, T∗] × R6).



Remark 2.1 Notice that the space Hk
ul(R6

x,v) contains not only the spaces Hk(R6
x,v) and Hk(T3

x×
R3

v) but also the space of functions having the form µ + µ1/2g, as its subsets. If µ is a global
Maxwellian, then we have well-known perturbative solutions of equilibrium as in [5, 6, 7, 8, 22].
But more general functions are included in Hk

ul(R6); for example, functions having different limits
at x- infinity like shock profile solutions which attain different equilibrium at the right and left
infinity, almost periodic functions, and bounded functions behaving in more general way at x-
infinity. Thus Theorem 1 extensively extends conventional spaces of admissible initial data.

Strategy of proof
Instead of constructing the solutions of the Cuchy problem (2.5) directly, we solve its modified
problem. More precisely, we set, for any κ, ρ > 0,

T0 = ρ/(2κ),

and

µ(t, v) = µρ,κ(t, v) = e−(ρ−κt)(1+|v|2),

f = µ(t, v)g,

Γ(g, g) = Γt,ρ,κ(g, g) = µ(t, v)−1Q(µ(t, v)g, µ(t, v)g)

for t ∈ [0, T0].
Then the Cauchy problem (2.5) is reduced to

(2.6)
{

gt + v · ∇xg + κ(1 + |v|2)g = Γ(g, g),
g|t=0 = g0.

The main motivation of this reduction is to create an extra term κ(1 + |v|2)g which is essential
to control the weight loss cause by Q as will be explained below. Moreover, as a byproduct, the
solution acquires a weight when integrated in t. Set Wℓ = (1 + |v|2)ℓ, ℓ ∈ N3 and modify the space
(2.7) as

Hk,ℓ
ul (R6) = {g | ∥g∥2

Hk,ℓ
ul (R6)

(2.7)

=
∑

|α+β|≤k

sup
a∈R3

∫
R6

|ϕ1(x − a)∂α
β Wℓg(x, v)|2dxdv < +∞}.

Further, define

Mk,ℓ(]0, T [×R6)

= {g | ∥g∥Mk,ℓ(]0,T [×R6) =
∫ T

0

∥g(t)∥2
Hk,ℓ

ul (R6)
dt < +∞}.

We will prove the

Theorem 2.2 Assume that 0 < s < 1/2, γ > −3/2 and 2s + γ < 1. Let κ, ρ > 0 and let
g0 ∈ Hk,ℓ

ul (R6), g0 ≥ 0 for some k ≥ 4 and ℓ ≥ 3. Then there exists T∗ ∈]0, T0] such that the
Cauchy problem (2.6) admits a unique non-negative solution satisfying

g ∈ C0([0, T∗]; Hk,ℓ
ul (R6))

∩
Mk,ℓ+1(]0, T∗[×R6)) .

Remark 2.2 That the solutions belong to Mk,ℓ+1 implies that they acquire the weight gain of
order 1 appears if integrated in t, though the initial data is assumed only to enjoy the weight of
order ℓ.

The proof of Theorem 2.2 relies of course on the estimates of the non-linear collision operator
Q.



3 Fundament estimates of Q

The most important recent progress on the non-cutoff case is the establishment of precise estimates
of Q from above and below. They are summerized as follows, [1], [4], [9], [18], [29]. Set

L2 = L2(R3
v),

Lp
α,Hs

α : Lp and Sobolev space with the weight (1 + |v|2)α/2.

r+ = max(0, r), r ∈ R.

Theorem 3.1 (upper bound of Q)
Let 0 < s < 1, γ > max{−3,−2s − 3/2}, m ∈ [s − 1, s], α ∈ R. Then,∣∣∣(Q(f, g), h

)
L2

∣∣∣ ≤ C
(
∥f∥L1

α++(γ+2s)+
+ ∥f∥L2

)
(3.8)

× ∥g∥
H

max{s+m,(2s−1+ϵ)+}
α++(γ+2s)+

∥h∥Hs−m
−α

.

Theorem 3.2 (lower bound of Q)
Suppose that 0 < s < 1, γ ∈ R, f ≥ 0, ̸≡ 0, f ∈ L1

2

∩
L log L.

Cf∥⟨Dv⟩s⟨v⟩γ/2g∥2
L2(3.9)

≤ −(Q(f, g), g)L2 + C∥f∥L1
max(γ+,2−γ+)

∥g∥2
L2

γ+/2
(Rn)

holds with a constant Cf depending only of ∥f∥L1
2

and ∥f∥L log L.

Remark 3.1 (1) Theorem 3.1 implies that Q induces both the regularity loss of order 2s and
weight loss of order (2s + γ)+ with respect to v-variable, which implies that Q cannot be Lipschitz
continuous operator so that the usual fixed point theorem fails for constructing local solutions.

(2) Theorem 3.2 implies a coercivity of Q, or more precisely, −Q(f, g) is a positive definite
operator with respect to g if f is non-negative.

(3) Take m = s . Then these two theorem implies that Q(g, f) behaves like a pseudo differential
operator

Q(f, g) ∼ −Cf ⟨Dv⟩2sg + lower order term,

with Cf > 0.

4 Control of derivative and weight losses

The proof of Theorem 2.2 requires the control of the derivative and weight losses caused by Γ. The
idea for controlling the weight loss was already stated. Here we present an idea for controlling the
derivative loss. The estimate of Γ are derived from Theorems 3.1 and 3.2 by using the formula

Γ(f, g) = Q(Mf, g) +
∫∫

R3×S2
B(M∗ − M ′

∗)f
′
∗g

′dv∗dσ

= S1 + S2,

where M = µ = µρ,κ(t), t ∈ [0, ρ/(2κ)]. We start with S1. Suppose f ≥ 0. Then, thanks to
Theorem 3.2, A1 can be estimated as

(S1, g)L2(R3
v) ≤ −CMf∥⟨Dv⟩s⟨v⟩γ/2g∥2

L2(R3
v) + C∥Mf∥L1

max(γ+,2−γ+)
∥g∥2

L2
γ+

≤ C∥Mf∥L1
max(γ+,2−γ+)

∥g∥2
L2

γ+
.



This cancels the derivative loss in v of order s.
Actually, another derivative loss appears for the proof of Theorem 2.2 because we shall need

estimates of Γ in Sobolev norms and thus the Sobolev embedding should be used. Notice that a
Leibniz-like formula holds with respect to v:

∂β
v Γ(Mf, g) =

∑
|β1+β2+β3|=|β|

T (∂β1f, ∂β2g, ∂β3M),

where

T (F, G, m) =
∫∫

Bm∗(F ′
∗G

′ − F∗G)dv∗dσ.

Consider the case |β| = 1. Without loss of generality, we take β = (1, 0, 0). Then,

∂βΓ(Mf, g) = T (f, ∂v1g,M) + T (∂v1f, g,M) + T (f, g, ∂v1M)
= E1 + E2 + E3.

Clearly (E1, ∂v1g) can be estimated as S1 if f ≥ 0. Theorem 3.2 cannot be used for E2 because
∂v1f cannot be non-negative. Instead, we shall use Theorem 3.1 with m = s;

|(E2, ∂v1g)L2(R3
v)| = |(Q(M∂v1f, g), ∂v1g)|

≤ C
(
∥M∂v1f∥L1

α++(γ+2s)+
+ ∥M∂v1f∥L2

)
∥g∥H2s

(γ+2s)+
∥∂∂v1

g∥L2
v
.

Therefore if 2s ≤ 1 (mild singularity), we have no derivative loss;

|(E2, ∂∂v1
g)L2(R3

v)| ≤ ∥f∥L2∥g∥2
H1

(γ+2s)+
(R3

v),

while if 2s > 1 (strong singularity), the derivative loss of order 2s − 1 appears and cannot be
controlled. The term E3 has no problem.

The singularity in the term S2 is killed by the term M∗−M ′
∗. Indeed, by the Taylor expansion

we have
M ′

∗ − M∗ = (∇vM)(v∗) · (v′
∗ − v∗) +

1
2
∇2

vM(v∗ + η)(v∗ − v′∗)
⊗2.

Note that

v′
∗ − v∗ =

|v − v∗|
2

(σ − (k · σ)k) +
|v − v∗|

2
(k · σ − 1)k,

where k = (v − v∗)/|v − v∗|. Since∫
B(|v − v∗|, k · σ)(σ − (k · σ)k)dσ = 0

by symmetry, and noting
k · σ − 1 = cos θ − 1 ∼ θ2 (θ → 0),

we can cancel the singularity of order θ−1−2s contained in B if 2s < 1 and thus S2 can be a finite
quantity.

All the ideas presented here are fully used for establishing a priori estimates of local solutions.
See [9] for a detail.



5 Strategy of local construction

The strategy for the proof of Theorem 2.2 is in the same spirit as in (ARMA 2010, [3]).
First, we construct the approximate solutions for the case where b is replaced by bε by a sequence

of iterative linear equations. More precisely, we decompose Γ as

Γ(g.h) = Γϵ(g, h)

= Γt,+
ε (g, h) − Γt,−

ε (g, h)

where

Γt,+
ε (g, h) =

∫∫
R3

v∗×S2
σ

Bε(v − v∗, σ)µ∗(t) g′∗h
′dv∗dσ,

Γt,−
ε (g, h) = hLε(g),

Lε(g) =
∫∫

R3
v∗×S2

σ

Bε(v − v∗, σ)µ(t, v∗) g∗dv∗dσ,

and define a sequence of approximate solutions {gn}n∈N by

(5.10)


g0 = g0 ;
∂tg

n+1 + v · ∇xgn+1 + κ⟨|v|⟩2gn+1 + Lε(gn)gn+1

= Γt,+
ε (gn, gn),

gn+1|t=0 = g0.

Given a non-negative gn and g0, it is not hard to construct a unique non-negative gn+1 for any
n ∈ N. Moreover, it is easy to see that if

g0 ∈ Hk,ℓ
ul (R6), g0 ≥ 0,(5.11)

gn ∈ L∞(]0, T [; Hk,ℓ
ul (R6)), gn ≥ 0,

for any T ∈]0, T0[, then the solution gn+1 is determined in the function class

(5.12) gn+1 ∈ L∞(]0, T [; Hk,ℓ−γ+

ul (R6)), gn+1 ≥ 0,

Actually the weight loss (5.12) can be recovered. We establish a uniform estimate for n of the
approximates solutions by the energy integral method. Set

Y = L∞(]0, T [; Hk,ℓ
ul (R6)) ∩Mk,ℓ+1(]0, T [×R6),

||g||2Y = ∥g∥2
L∞(]0,T [; Hk,ℓ

ul (R6))
+ κ∥g∥2

Mk,ℓ+1(]0,T [×R6) .

Lemma 5.1 Assume that −3/2 < γ ≤ 1 and let k ≥ 4, l ≥ 0, ε > 0. Then, there exist positive
numbers C1, C2 such that if ρ > 0, κ > 0 and if g0 and gn satisfy (5.11) with some T ≤ T0, the
function gn+1 of the solutions of (5.10) enjoy the properties

gn+1 ∈ Y

||gn+1||Y ≤ eC1KnT

(
∥g0∥2

Hk,ℓ
ul (R6)

+
C2

κ
||gn||4

L4(]0,T [; Hk,ℓ
ul (R6))

)
,

where Kn is a positive constant depending on ∥gn∥L∞(]0,T [; Hk,ℓ
ul (R6)) and κ.

We are now ready to prove the convergence of {gn}n∈N. Fix κ > 0. Let D0 > 0 and let

(5.13) g0 ∈ Hk,ℓ
ul (R6), ∥g0∥Hk,ℓ

ul (R6) ≤ D0



be given. Introduce an induction hypothesis

(5.14) ∥gn∥L∞(]0,T [; Hk,ℓ
ul (R6)) ≤ 2D0

for some T ∈ ]0, T0]. Notice that the factor 2 can be any number > 1. (5.14) is true for n = 0 due
to (5.13). Suppose that this is true for some n > 0. We shall determine T independent of n. A
possible choice follows from Lemma 5.1 with

eC1K0T = 2,
24C2

κ
TD2

0 = 1 where K0 =
1
κ

(2D0 + (1 + κ)2)

or

T = min
{

log 2
C1K0

,
κ

24C2D2
0

}
.(5.15)

and the induction hypothesis (5.14) is fulfilled for n + 1, and hence holds for all n.
For the convergence, set wn = gn(t) − gn−1(t), for which (5.10) leads to

∂tw
n+1 + v · ∇xwn+1 + κ⟨|v|⟩2wn+1 = Γt,+

ε (wn, gn)

+Γt,+
ε (gn−1, wn) − Γt,−

ε (wn, gn+1) − Γt,−
ε (gn−1, wn+1),

wn+1|t=0 = 0.

By the same computation as in Lemma 5.1, we get

||wn+1||2Y ≤ 1
2
C2e

C1K0T 1
κ

T
{
∥gn+1∥2

L∞(]0,T [; Hk,ℓ
ul (R6))

+ ∥gn∥2
L∞(]0,T [; Hk,ℓ

ul (R6))

+ ∥gn−1∥2
L∞(]0,T [; Hk,ℓ

ul (R6))

}
∥wn∥2

L∞(]0,T [; Hk,ℓ
ul (R6))

,

with the same constants C1, C2 and K0 as above. Then, (5.15) give

||gn+1 − gn||2Y ≤ 24C2D
2
0κ

−1T∥gn − gn−1∥2
L∞(]0,T [; Hk,ℓ

ul (R6))
.

Finally, choose T smaller if necessary so that

24C2D
2
0κ

−1T ≤ 1
4
.

Then, we have proved that for any n ≥ 1,

(5.16) ||gn+1 − gn||Y ≤ 1
2
||gn − gn−1||Y .

Consequently, {gn} is a convergence sequence in Y , and the limit

gε ∈ Y,

is therefore a non-negative solution of the Cauchy problem (2.6). The estimate (5.16) also implies
the uniqueness of solutions.

In order to prove that gε exists uniformly for ε, we shall establish uniform a priori estimates
for the Cauchy problem (2.6).

Theorem 5.1 Assume that 0 < s < 1, γ > −3/2, γ +2s < 1. Let g0 ∈ Hk,ℓ
ul (R6), g0 ≥ 0 for some

k ≥ 4, l ≥ 3. Then there exists T∗ ∈]0, T0] depending on ∥g0∥Hk,ℓ
ul (R6) but not on ε such that if for

some 0 < T ≤ T0 ,

(5.17) gε ∈ C0(]0, T ]; Hk,ℓ
ul (R6)) ∩Mk,ℓ+1(]0, T [×R6)

is a non-negative solution of the Cauchy problem (2.6) and if T∗∗ = min{T, T∗}, then it holds that

(5.18) ∥gε∥L∞(]0,T∗∗[; Hk,ℓ
ul (R6)) ≤ 2∥g0∥Hk,ℓ

ul (R6).



Remark 5.1 The case T∗ ≤ T gives a uniform estimate of local solutions on the fixed time interval
[0, T∗] while the case T < T∗ gives an a priori estimate on the existence time interval [0, T ] of local
solutions. The latter is used for the continuation argument of local solutions.

In the following, ρ > 0, κ > 0 are fixed. Furthermore, recall T0 = ρ/(2κ). We start with a
solution gε subject to (5.17) for some T ∈ ]0, T0]. Put

hα,β
ℓ = ϕ1(x − a)Wℓ∂

α
β gε(5.19)

and take the L2 inner product of hα,β
ℓ and the equation for hα,β

ℓ obtained by applying ϕ1(x−a)Wℓ∂
α
β

to (2.6). In the below ∥ ∥ and ( , ) will stand for the L2(R6) norm and inner product respectively
unless otherwise stated. Then we have

1
2

d

dt
∥hα,β

ℓ ∥2 + κ∥hα,β
ℓ+1∥

2 = (Ξ, hα,β
ℓ ),(5.20)

where

Ξ =ϕ1(x − a)Wℓ∂
α
β Γ(gε, gε) − [ϕ1(x − a)Wℓ∂

α
β , v · ∇x]gε

− κ[ϕ1(x − a)Wℓ∂
α
β , ⟨v⟩2]gε

=Ξ1 + Ξ2 + Ξ3.

We shall derive the estimates

Lemma 5.2 Assume that 0 < s < 1/2, γ ≥ −3/2, γ + 2s < 1. Then,

|(Ξ1, h
α,β
ℓ )| ≤ C∥gε

ℓ∥2
Hk,ℓ

ul

∑
|α′+β′|≤k

∥hα′,β′

ℓ+1 ∥,

|(Ξ2 + Ξ3, h
α,β
ℓ )| ≤ C(1 + κ + ∥gε∥Hk,ℓ

ul (R6))∥g
ε∥Hk,ℓ

ul (R6)∥h
α,β
ℓ+1∥.

The proof relies heavily on the ideas stated in Section 4.
Use this lemma to evaluate the right hand side of (5.20) to deduce

d

dt
∥hα,β

ℓ (t)∥2 + 2κ∥hα,β
ℓ+1∥

2

≤C

κ
((1 + κ)2 + ∥gε∥2

Hk,ℓ
ul (R6)

)∥gε∥2
Hk,ℓ

ul (R6)
+

κ

k3

∑
|α′+β′|≤k

∥hα′,β′

ℓ+1 ∥2,

and after integrating over ]0, t[,

∥hα,β
ℓ (t)∥2 + κ

∫ t

0

∥hα,β
ℓ+1(τ)∥2dτ

≤ ∥gα,β(0)∥2
Hk,ℓ

ul (R6)
+

C

κ

∫ t

0

((1 + κ)2 + ∥gε(τ)∥2
Hk,ℓ

ul (R6)
)∥gε(τ)∥2

Hk,ℓ
ul (R6)

dτ

+
κ

k3

∑
|α′+β′|≤k

∫ t

0

∥hα′,β′

ℓ+1 (τ)∥2dτ.

Take the supremum with respect to a ∈ R3 (see (5.19)) and sum up over |α + β| ≤ k to deduce
that

∥gε(t)∥2
Hk,ℓ

ul (R6)
+ κ∥gε∥2

Mk,ℓ+1(]0,t[×R6)

≤ ∥g0∥2
Hk,ℓ

ul (R6)
+

C

κ

∫ t

0

(1 + ∥gε(τ)∥Hk,ℓ
ul (R6))

2∥gε(τ)∥2
Hk,ℓ

ul (R6)
dτ.



Then the Gronwall type inequality gives for Cκ = C/κ,

(5.21) ∥gε(t)∥2
Hk,ℓ

ul (R6)
≤

∥g0∥2
Hk,ℓ

ul (R6)
eCκt

1 −
(
eCκt − 1

)
∥g0∥2

Hk,ℓ
ul (R6)

,

as long as the denominator remains positive. We choose T∗ > 0 small enough such that

eCκT∗

1 −
(
eCκT∗ − 1

)
∥g0∥2

Hk,ℓ
ul (R6)

= 4.

Then
T∗ =

1
Cκ

log
(
1 +

3
1 + 4∥g0∥2

Hk,ℓ
ul (R6)

)
is independent of ε > 0, but depends on ∥g0∥Hk,ℓ

ul (R6) and the constant C which depends on ρ, κ, k

and l. Now we have (5.18) for T∗∗ = min(T, T∗).
From (5.18) and (5.20), we get also, for κ > 0,

(5.22) κ∥gε∥2
Mk,ℓ+1(]0,T∗∗[×R6) ≤ 2∥g0∥2

Hk,ℓ
ul (R6)

(
1 + 2CT∗(1 + 2∥g0∥2

Hk,ℓ
ul (R6)

)
)
.

We have proved Theorem 5.1.
Combine (5.21)and (5.22). Then the compactness argument as in Section 4.4 of [3] applies, to

conclude the existence part of Theorem 2.2. The uniqueness part comes from Theorem 4.1 of [8].
Now the main Theorem 2.1 is proved by the help of Theorem 2.2, in the same manner as in Section
4.5 of [3].
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