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AsstrAcT. It is known that the coupling of some degenerate dissipative operator and a
conservative operator gives full dissipation and convergence to the equilibrium. Based on
the estimates on the collision operators for the Boltzmann equation without angulgy cuto
we obtain the convergence rate estimates on solutions to the equilibrium for both soft and
hard potentials. Our approach combines the compensating function method introduced by
Kawashima for the Boltzmann equation and the energy method.

1. INTRODUCTION

The hypocoercivity theory which is closely related to, but ifedent from, the hy-
poellipticity theory has become one of the main focuses in the study of problems from
mathematical physics. The main feature of this theory is that the coupling of a degenerate
diffusion operator and a conservative operator may give the dissipation in all variables, and
the convergence to the equilibrium state which lies in a proper subspace of the kernel of
the difusion operator. Breakthroughs have been made and substantial results have been
obtained recently, especially by Villani and his collaborators, on problems in bounded do-
mains or a torus. However, there are still many challenging problems remained unsolved.

We will focus on problems on the hypocoercivity theory for kinetic equations in the
whole space and try to obtain the optimal convergence rates of solutions to the equilibrium
states. One of the mainftiérences between problems in a bounded domain and those in
the whole space is that only algebraic convergence rates are expected in the whole space
rather than (almost) exponential decay in the bounded domain.

Many kinetic equations and systems have the main structure

C(f) = D(),

whereC is a conservative operator abds a degenerate dissipative operator usually on the
velocity variables. The hypocoercivity theory is about the coupling of these two operators,
which leads to a full dissipation in all variables and the convergence to the equilibrium
in large time. Roughly speaking, the hypoellipticity issue is related to the fact that the
interaction of the “non-dissipative” first-order opera®mwith the “dissipative”, but not
elliptic, part of an operatat in the form of

m
L=- AJZ+B, with m<n=dim,
i1
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produces regularization in the missing directions so that the time evolution equation
fi+Lf =0,

presents some of the typical features of a parabolic equation. On the other hand, the
hypocoercivity theory is about the full dissipative large time behavior of the solution to
the equilibrium state in terms of convergence rates in all variables, which comes from the
interaction of the conservative operator and the degenefétisige operator. The hypoco-
ercivity theory has been studied and developed recently by many researchers, cf. the papers
by Villani and the references therein. However, most of the results obtained so far are about
the problems in a torus or in a bounded domain where (almost) exponential decay to the
equilibrium can be obtained. For problems in the whole space or in an exterior domain,
the convergence rate is no longer (almost) exponential but algebraic. Based on the previ-
ous work, we will focus on the perturbative problems around some equilibrium states, in
particular, in the setting of non-angular cfito

The hypocoercivity theory has been investigated extensively for physical models which
include the Boltzmann equation, oscillator chains, Fokker-Planck equation, etc. And some
elegant theorems on the (multiple) commutators in the spirit @ik&nder's celebrated
regularity theorem for hypoelliticity phenomena have been established. Besides the study
on the problems in a bounded domain or in a torus, detailed studies on the Boltzmann
equation in the whole space were also carried out which include the well-posedness theory
in a new function space with less regularity assumption on the initial data, the optimal
convergene rates of the solutions and their spatial derivatives in time to the equilibrium,
and the &ect of the external force on the convergence rate analysis.

2. MAIN RESULTS

For non-equilibrium gas, Boltzmann in 1872 derived a time evolution equation for a
scalar function

f=f(txVv) teR',xeR3veR3
which stands for the probability (number) density function of gas particles having position
x and velocityv at timet satisfying:

of
i +Vv- Vif = Q(f, f),

whereQ, the collision operatodescribes the binary collision of molecules given by
Q(f, f) = f B(v - v.,0)(f' f/ — ff,)dv.dw.
R3xS?

Here,f = f(t,x,v), f' = f(t, x, V), f/ = f(t, x, V), f. = f(t, X, v.) andv’ = v—((v-V.) w)w,
V, =V, + ((V- V) - w)w, come from the Conservation of momentum and energy, that is
Vv =V AV, VP P = VP VP
There are two classical models:
e Hard sphere gas:
B(V — V., 6) = Qolv - V.|| cosd)],
¢ Potential of inverse power with ~ r=:
B(V— V., 6) ~ [V = V.["16]% % bo(6),
4 1
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wherebg(d) > 0 does not vanish ne@ = 0. The interaction potential is called a hard
potential ifp > 4, Maxwellian molecule ip = 4 and a soft potential if ¥ p < 4.

Let us first review the works on convergence rates with Grad’s angulaff @agsump-
tion:

¢ Perturbation( denoted hy) around a global Maxwellian.

For hard potential, the following results are obtain:

(a) : Bounded Domain= u= O(e ") (o > 0):
— Ty (Ukai);
— Bounded Domain with Boundary Conditions
(Giraud, Asano, Shizuta; - ).
(b) : Unbounded Domaie» u= O(t™?) (do > 0):
— Ry (Ukai, Nishida-Imai);
— Exterior Domain (Ukai - Asano; -);
— Cauchy problem i N L (Ukai-Y., '06).
Note that the spatial derivatives of the solutiorLfinorm have the following properties:
—: Thel-th order space derivative of the solutiomlecays as ®(“«') for LY pertur-
bation.
- However, the velocity derivativé,u does not decay faster thart0()
Here,
231 1 |
=323
On the other hand, imposing smallness conditions on the space derivatives leads to the
almost exponential decay in torus even for soft potentials:
(1) : Strain-Guo ’'05: Consider the ca%éwith the cutdf soft potential and lef > 4.
For anyk, if

A = [luollezx
is suficiently small, then .
(AED) Iu(©)lhag, < Ca(L+ )™
holds for allt > 0. Here, it is required that

a—0 (k- ).

(2) : Desvillettes-Villani '03: Suppose that there exists a smooth global solution sat-
isfying
u(t) € BC([0, o0); HE,)

for suficiently largef > k. Then, (AED) also holds.

However, the situation is quiteftirent from the one obtained by Strain-Guo:
Here, the smallness condition agis not assumed and hence the solution may
be large, but the existence of such smooth large solutions is a big open problem at

the present moment.

For the case without angular ctitowe obtain the following result on covergence rates
to equilibrium.

Theorem. (AMUXY, 2010) Let 0 < s< 1 andf = u + u*/? g be a global solution with
initial datum fy = u + /2 go. We have the following two cases:
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1)Lety+2s>0,N > 6,¢ > 3/2+2s+y. There existgy > 0 such that iilgollil(R3,L2(R3)) +

IgollF es) < €0 << 1, we have
Ilg(t)lle(Re) = IIPg(t)Ilfz(Re) +I(0 - P)g(t)||f2(R6) < (1+1)732

D PO + ) 10" = PYIMIZz gy < (L + 172

1<fal<N lal<N

2) Let ma>{—3,—§ —2s} <y <-25N > 6, >N+ 1. There existgg > 0 such that if

||gO||§:{N(R6) < gy << 1, we have
(4

SUPIIG)IIFu-sges) S (L + 07
XeR3 v

Remarks: 1. Note that the convergence rate in the gas@s > 0 is optimal because
it is the same as those for the linearized equation. The proof is based on the combination
of the LP— L% estimate on the solution operator to the linearized equation, and the energy
method. Thd.P-L% estimate can be obtained by the compensating function introduced by
Kawashima, or the spectrum estimate obtained by Pao.

2. The case whef + 2s < 0 corresponds to the soft potential in the dhittase with
v < 0, and the optimal convergence rate is not known even forficptdentials. So the
proof here is simply based on energy method.

In the following, we sketch some ideas of the proof.
l. ¥ + 2s > 0: Compensating functiom Energy method

Firstly, consider a linear equation

(Ot +Vv-Vy+Lh=g,

h o= ho,

whereL is the linearized collision operator.

Compensating function (Kawashima, 1990):

S(w) is callled a compensating function if it satisfies the following three properties
(Kawashima):

(i) S(-) is C™ on S taking values in the space of bounded linear operators?(R3),
andS(-w) = -S(w) for all w € S2.

(i) iS(w) is self-adjoint on_?(R®) for all w € S°.

(iii) There exists a constamy > 0 such that for alf € L2(R%) andw € S?,

R(S(w)(V- w)f, F) + (LT, fy > co(IPf[5 + (1 — P)fI3). (A

Construction of the compensating function by Kawashima can be briefly described as
follows:
Let

W =spargjlj=1,2,---,13}.
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Here, the orthonormal set of functioasis given by

. 1 :
eL=ui, en=vul, =123 es=%(IVI2—3)u§,
and
3 Ci .,
ji 1.
€4 = S (VP -1u2,j=23
]+ £ \/E i
& = ViVeu?, 6 =\VoVaul, €j0=\VaViu?,
1 L
80 = ——=(V?-5Npuz, =123,
+1 10 I

where the constant vectots= (G, G2, Gi3), i = 2, 3 together withe; = (ig, ig ig) form
an orthonormal basis &t.
Let Py be the orthogonal projection frobf(R3) onto W,

13
Pog = Z(g, 8 L2(z3) &
k=1
SetW = (f,e), k = 1,2,---,13, andW = [Wy,..., Wi3]", W = [Wy,..., W], and
W = [Wﬁ,...,W]_g]T. Thenw

HW+ Y VidgW+Tw=h+R
]

whereVi (j = 1,2, 3) andL are the symmetric matrices defined by
L ={(La, e«)LZ(Rg)}iil, Vi= {(vije Q)LZ(Rg)}&il,

andh = [(h, €1)2(r3)> - (N, elg)Lz(Rg)]T. HereR denotes the remaining term which contains
the factor ( — Pp)g.

3
; V. V.
v = vig =\ V).
]Z:; P71 Vo

with
0 & & & 0
& 0 0 0 a&s
Vu@Eé) =& 0 0 0 a&|,
&0 0 0 af
0 aér aé, aés O
and
0 apié1 axmér asés 0
0 aséy aés assés O
0 & & 0 0
T_[0 O &3 &2 0
Vai(§) = Vialé)” =1 £ 0 & e
0 0 0 0 a&
0 0 0 0 ab
0 0 0 0 as

wherea, = /2, aj = V20, k=23, j =1,2,3, andas = \/g
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By setting
3 ~
i Rii V
- re-(11 )
=1
with
0 & & & 0
B -£ 0 0 0 O
Ri1 = —fz 0 0 0 O ,
-& 0 0 0 O
0O 0O 0 O

it holds for some suitable,

4
RERWV(@W W) > caWi2 = ¢ > Wi 2.
k=2
Hence, for any givew € , setR(w) = {rij(w)}};_, and then

4
S(Wg= ). Aru(@)(Q &)L
k=1

is a compensating function with© 1 << 1.

LP — LY estimate:
Taking the Fourier transform in x of the linear equation yields

G +ilI(v- )+ Ly = h,
wherew = £.
Then take the inner product with (€1¢]?) — ixS(w))§ and use the properties of the
compensating function, to get
(@ + DB, sy —  *EIGS@). B)Logs))

+ So((L+ P = PG + ERIPGI g,

< C(L+ IEP)RED. M) 2ey-
This implies that
N [ o2
E(g)t + 601 + |§|2 E(g) S C||h”LZ(R§)’

where

R R el P a
E(@) = 1017,z - K%Wos«u)g, O)vzqe) ~ 101z

whenk is chosen to be small. And this estimate yields
. SolélIt | ' Solél’I(t—9),
2 0 2 2
1901 2zg) < Cexﬂ—rw}ﬂgoﬂl_z(ﬂgg) + Cfo eXp{—Tw}HhHLz(Rg)(S)dS
And this gives the following lemma.
Lemma (Kawashima). Letk > k; > 0 andN > 4. Assume that
(i) 9o € HN(R®) N Z,,
(i) h e CO([0, oo[; HN N Zy),
(iii) Ph(t, x,v) = O for all (t, X, v) € [0, o) x R3 x R3.
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(iv) g(t, x,v) € CO([0, oo[; HN(R®)) N C([0, oo[; HN-1(R®)) is a solution of the linear
equation.
Then we have

IVEGIZ2 ey < C(L+ 8)275(IVGollzy(ee) + IVollLzes)?

+ fo (1+t— 97279 ([Vihllz,zs) + IVEhlLzs)) S
for any integem = k — k; > 0, whereg € [1, 2] and
3 1 1 m

Energy estimate:
Recall from existence theory, whéh> 6 andl > 3/2 + 2s+ y, we have

dES+D£O,

where& = 1lglif e ANAD = VPG 15 + 101 = PYGIZ o)
In fact, we can also prove

dg(‘ll + D < C||V,Pgll?

where&y = [IVxPalu-s ey + 1101 = P)lE ey
Estimate on the collision operator:
Recall

L2 RG) )

IC(E, PllLo@s) < ”f||L2(R§)”g”H(2ys+ZS)+(Rﬁ)'
Hence, by using the fact that > 6 and¢ > 3/2 + 2s + vy, Sobolev imbedding implies

& s &E+ P

A

IT(@: OEoges,y + V<T@ DIl Loy
IN@. 92, < &E&+IIPYI;gs -
Combination of the above three estimatesDefine

M(O = Supi(1+9%Ea(3) Mof®) = SUP((L+ 9 FIa(S) s

O<s<t

Then by thel.? — L9 estimate, we have

-3
IVxIOzee,) S @+ D7ZGoIZ, rs) + V5ol oes )

A

t
+ f (L4t = 975 (IN(@. GVl + V(@ Dlloes, )20l

A

L+ + f L+t - 971861 + PGl e (SIS

A

n(1+t)‘§ +6M(t)f(1+t—s)‘5(1+ s)‘éds
0

+M2(t) ft(1+ t—92(1+93ds
0

n(L+1)73 + 61+t EM(t) + (1+ )2 M2(H),

A
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wheren = ||90||§1(Re) + ||go||ﬁ|(N(R6), and§ < 6. Thus, we have

&)

IA

t
&1(0)e™ + fo e IVuglf, s (s

set (L +1)72 + 5(1+ 1) 2M() + (1+ )2 M2(t),

A

that is,
M(t) < (6 + 1) + SM(E) + M2().
By applying thel.P — L9 estimate again, we have

19O e

N

_3
(L+ 1) 7290l ssy + 1901255 )

t
s fo (L +t— 9 E(IF(@. Ol ey + (G Dl ages 2SS

N

t
w07+ [ @rt-9iee + POl )9

n(L+1)7% + 61+t IM(t) + (1+ )2 M2(H).

N

Hence,
Mo() < n+3M() + M3

(1 +6) + M3().

IZANERZN

By assumptiony + ¢ is small. The above estimate and the continuity argument give
Mo(t) < C,5, and thenM(t) < C, 5, whereC, s andC, s are two constants depending gn
andgé only.

Then the convergence rates for the hard potential case stated in the theorem follow.

Il. y + 2s < 0: energy method

We first recall the following lemma.
Lemma (Deckelnick). Let f(t) € CX([to, 0)) such that
f(t) =0, A= f(t)dt < oo

to
and
(1) < a(t) f (1), t > to.
If at) > 0 andB = [~ a(t)dt < oo, then
(tof(to) + ) exp@A+B) -1
t
First of all, the basic energy estimate derived for the global existence gives

f(t) < R t > to.

d
d—tSN,f + CoDny <0,

wherecg > 0 is a constant. Here,

Ene ~ 1A gy + 1G22

HN(RS)’

= IV AP 1 + 102112,
Dne = IVxAllfn-ygay Ilgz“B(’\,‘(RG)’
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and
~N
R6 — e ’ Rﬁ . %.
B (®) ={ge S gl
= > I gt I, s o).
o BIN VRS
We can also construct another functioﬁ_aLl,H that has the following property
o 2 2
En-16-1 ~ IVxAlfn-2gs) + IIngzII,;,ﬁ,lz(Re),
and
A trms + 10Dt S IV Ao (AR + 102l
dt N-1-1 T J0Ne-1 S TV xS Ulgn-1 ey UTY x Al gn-2 g3y 2l 2(re)
S ||Vxﬂ||E|N71(R§)8N71,£71-
Since

j(; (En-1e-1+ ||VX‘?{“|2_|N—1(R>3<))dt < oo,
By using the assumption that- 1 > N, the lemma implies that

5N—1,[—1 <@+t

Finally, the references of this note can be found in the references in our recent paper:

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yaipltzmann equation without
angular cutgfin the whole space: I, Qualitative properties of solutipfseprint HAL,
httpy/hal.archives-ouvertes/fral-00510633r/.
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