Wave equations with time depending propagation
speed
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What happens if the tension of a vibrating string is changed with respect
to time?

Such a phenomenon is described by a partial differential equation, which
is called a wave equation, and the solution is represented explicitly by an
application of Fourier series if the tension is a constant. However, it is not
easy to see the behavior of the solution to such kind of problem for non-
constant tension, because the reduced ordinary differential equations from
the wave equation are variable coefficients. Indeed, our problem is described
by the following initial boundary value problem of a wave equation:
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where a(t) is the propagation speed, which is determined by the tension of
the string, satisfies ap < a(t) < a; with some positive constants ap and a;.
Then the total energy of the string at the time ¢ is given by
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If a(t) is a constant, then the energy conservation law: E(t) = E(0) holds.
However, such a property does not hold in general for variable propagation
speeds.

The main purpose of my talk is to derive the properties of the coefficient
for a small perturbation of the constant coefficient.
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