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1. Introduction

Cauchy problem of non—linear wave equation with time
dependent propagation speed:

( (82 — a(t)2M)u = F(t, 8,1, V), (tx) € R, X R™ |
_ (U(O, X),ut((), X)) — (UO(X),ul(X)), X € Rn

u: real valued, uy,u; € C,°(R™"), n = 2,
a(t) =>ay >0, F(t,0,0) =0.

J

Problem
Existence of a global solution with small data (=GS)

under the influences of the variable coefficient




2. Background

I. Constant coefficient

(0f — N)u = F(9,u,Vu), F(0,0) =0

(GS) is valid under suitable assumptions to the nonlinear

terms F(p, q), the initial data (uy, 1) and the space
dimension n.

Linear wave equation

(0f —Nu =0

The properties: energy conservation, LP-L9 estimates,
etc., are established.




II. Linear wave equation with variable coefficient

(0f —a(®)*MNu=0

Generally, we cannot expect the properties: the energy
conservation, L* well-poseness, LP-L9 estimates, etc.

Energy estimate

1
E(0) =2 (a@?I7u(t ) + 19:u(t)])

2 /
= E'(t) = a’(f:)a(f:)||\7u(t,.)||f2 < lz(g)l E(t)
= E(t) < exp (2 fot |C;’((SS))| ds) E(0)

Boundedness of the energy is not trivial if a(t) is
oscillating infinitely many times.



0<a0Sa(t)Sa1

- a'(t) € LY(R,) = E(t) = E(0)

= a(t): periodic
= A(ugy, Uq), s.t. limsup;_,, E(t) = oo [Yagdjian '05]

ca(t) EC*R), la'@WI*+]d"®]<Cc1+1t)?
= E(t) = E(0) [Reissig & Smith '05]

- a(t) € C1(R,), a(t) € C*(R,), a € (0,1)
= Gevrey 1/(1 — a) well-posed
[Colombini, DeGiorgi & Spagnolo '79]



a(t) >0

-a(t) e C"™*(R,), a€(0,1), meZ, m=0
= Gevrey 1 + (m + «a)/2 well-posed
[Colombini, Jannelli & Spagnolo '84]

Remarks.
* f(x): Gevrey class of order s & ‘f(f)‘ < exp(p({)l/s)

* Linear wave equations with time dependent coefficients
are studied as linearized model of Kirchhoff equation:

0fu + (1 + [ [Vu(t, x)|?dx)Au = 0
[Arosio & Spagnolo '84], [Manfrin '05], [H. '02, '06]




[II. Monotone increasing coefficients

(02 — A(£)2M)u = 0, 1(0) >0, X'(t) =0

Energy estimate

27
B () = HOAOITu)IE < 52 B
A(t)?
= E(t) _A(O)ZE(O)

» LP-19 estimates [Reissig & Yagdjian '00], etc.



IV. Mixed case

a(t) = A(t)b(t)

A(0)>0, A'(t) =0, 0< by <b(t) <by

» b(t) € C%(R.): periodic, A(t) = exp(t®), a > 1/2
= LP-19 estimate [Reissig & Yagdjian '00]

- b(t) € C*(R.): periodic, A(t) = exp(t®),a =0
= no LP-L9 estimate

Remark. Faster increasing A(t) has a good influence for

the estimate.



Properties of the coefficient

a(t) = A(t)b(t)

L A(0)>0,14(t) =20,0< by <b(t) <byg ,

- smoothness: a(t) € C™(R,), m=>1

= order of the derivatives:

p@ D) < € p(OF, (k= 1,--,m)

" increasing order. A(t)

= stabilization (difference from a monotone function)

fi 1a(s) = A(9)lds < 6() = o (J; A(s)ds) = o(A®)



In this talk we restrict ourselves

p(t) = A( ) 28 (1og AP, 6(6) = A(t)(log A(D) ™"

for B,y = 0and t > 1, that is,

.
pO®)] < 6 (22 (logA®F), (k = 1,+,m)

5 1a(s) = A(s)|ds < A(t)(log A(£)) ™Y

\_

Remark. v = 0 is a trivial case.




Example 1. A(t) = exp(t%), b(t) € C™, periodic.

(AL = t1=%A(t)

k
b ()] < G, ( E%(log/\(t))ﬁ) ~ ghla-1+af)

>a—14+af =0, y=0

Example 2. A(t) = (1 + t)?, b(t) € C™, periodic.
(A(t) ~ t A(t)

k
b ®)] < Gy ( ()(logA(t))ﬁ) = (t7'(logt))"

A(t)

such a constant [/ does not exist.

\.



Example 3.

A(t) = (1 4+ 6)?, b(t) = 2 + cos((log(1 + t))?)

A = 20, PR ©)] < (7 Qog £)51)"

1 A
_A®)

=0—-1<5p(,vy=0

——(log A(t))F = t"*(log t)”




Example 4. A(t) = exp(t%),

p(t) tel =[YjY*+1]

b(t) = { 1 t € [0,00)\UjZ, [

p(t) € C™, 1-periodic, p(t) > 0, p™)(t) =0 neart = 0
fork=1,---m

i A(t) = t17%A(1)

< () :
O] < ¢ ( ()aogm))ﬂ) = (k(a-1+ap)

>a—1+af =20, y=1/a—-1

\.



V. Nonlinear equations

We restrict ourselves to the following special nonlinearity:

F(p,q) = Ipl* — 1q|°

(02 — B = 10,ul” — 17ul?, (uo(x), us ()|

ﬁ v =1 —exp(—u) (Nirenberg's transformation)

@200 =0, (5600, 1 () = (1 - e uwe )

0<v(tx) <1, te[0,T),

lim v(t,x) =1 = lim u(t,x) = o
t->T-0 (&%) t—>T-0 (£, x)



(07 — a(®)?Dyu = 19ul? - a(t)?|7ul? |

ﬁ v =1 —exp(—u) (Nirenberg's transformation)

{ (32 — a(t)?A)v = 0 J

a(t) =ay = |v(t,x)| <1 if |vyg(x)| + |[vi(x)| K« 1

a(t) £ const. = |v(t,x)| < 1 does not follow from
[ve ()| + v ()] K 1



(07 — a(t)?*Du = |0,ul® — a(t)?|Vul?

[ ‘b(k)(t)‘ < Cy (iit; (logA(t))ﬁ) (k=1,--,m) ]

Theorem. ([Reissig & Yagdjian '00]).
m=2, <1 = (GS).

Corollary.

A(t) = exp(t%), b(t) € C?, periodic, « > 1/2
= (GS).

Remark. (GS) for a € (0,1/2) is an open problem.




3. Main Theorem

(02 — a(®)*Mu = |0,ul? — a(t)?|Vul?

.
)] < 6 (22 10gA®) (k= 1,-,m)

[ la(s) = A(s)|ds < A(t)(log A(£))

\_

Motivation We want to derive benefits of the
following properties of the coefficients for (GS):

* further smoothness: m > 3:

- stabilization y > 0.




-
b®©©)] < ¢ (22 Qog A©), (k = 1,+,m)

_ [ 1a(s) — A(s)|ds < A(¢)(log A(£)) ™ )

Theorem. ([H., Inooka & Pham]).
m=>2 f<1+y(1-1/m) = (GS)

Corollary.

A(t) = exp(t?), b(t): Example 4, a > 1/(m + 1)
= (GS).




Comparison with the previous results

-
6" ()| < ¢ (A(t) (logA(t))B) (k=1,-,m)
_ [ la(s) — A(s)|ds < A(¢)(log A(£)) ™
[HIP] [RY]
General model 1
Ex. 4 1 1
(@ >) m+ 1 2




4. Sketch of the proof

[ (0f —a()*ANv =0, v(0,x) = vy, v,(0,x) = v, ]

Proposition 1. (GS) is valid if the following estimate holds
for s > n:

stug{IV(t, )|} < C(llvollyst + llvillys-11) (%)

w(t, &) = D(t, &)
(02 +a(®?1EDw = 0, w(0,€) = wo, w(0,€) = w |

(% ) is valid if the following estimate holds:

w(t, )1 < CIET (wo (O] + 117 w1 (DD ()




ToA(To)I$] = N(> 1)
A(to)1€] = N(log A(tp))"**
Zy ={(t,¢); 0 <t <10}
Zs ={(t,¢); 19 <t < to}
Zy =4(t,$); to < t}

|




Estimate in Zy

Reduction to 1st order system
(0 + a(®)*|&]*)w =0

{4

/ oW, = AW, \

_ (Wt +ial$|w _($1 by
Wl‘(wt—ia|€|w)' Al‘(b1 a)
¢1 =5, +ialél, by =by =5 y
A E]Iw(E, N + lwe (8, )| = W1 (2, O

\_




Diagonalization

_ Ay O 1 &
M Ay My = (01 /1_1)’ My = (51 11>
[ oW, = AW, J

4

W, = A,W,, Wo= M7'W,

(P2 b\ _ (M O\
Az—(bz @)—(O )~ M @M)

- /

4 N




Symbol classes in Zj

[ F(66) € SPq, 1)

1 r+k
= [0ff (6] < CeAIED (K aogA)ﬁ) (k=1,,p)
- J/

~

Lemma. f € SP{q,r}, geSP{g 1} >
(i) 8.f € SPV{q,r+ 1};
(ii) fg e SP{q+q',r+71'};
(iii) SP{q,r} c SP{g+1,r -1}
(iv) by € S=1V{0,13}, 1/¢p15 € ST™{-1,0}, ;5 > 0.




Proposition 2.

by, 1 & A—
M= (qbk k>' = (6 1k)’ 6 = 5
bk ¢k k k

by € STk +1,k}, 1/ € ST {—-1,0}, px > 0

= App1 = My (A — )My,

A 0 _ b
— (Ok A_) + Mkl(atMl) — (¢k+1 k+1)
k bk+1 Pk +1

by €SM KD |k + 1},

1/¢(k+1)f5 S S(m—k—l){_l,o}, ¢(k+1)5 > O;

d¢ log(1—|8k]|?
¢(k+1)9a=¢km— : (2 )




After m — 1 steps diagonalization

4 0Wnm = AW,

_ _ ¢
Wy = Mml—l e My 1W1, Ap = (bm
m

"
Pm

b, € 5(0) {—-m+1,m}, ¢, x = lat log(
N Y

)
rer (1=18k12) v

0t |Win|* = 2Re (AW, W) < 2(Pmg + [b D [Wi |2

a(t) T 1 — 18 ()12

2
= |Wm(t, g)l < a(to) L 1 — |5k(t)|2

X exp (fti) 2|b,, (s, f)ldS) Wy, (o, )1°




t t

(s, ©)lds < Clel ™ [ 2 (log Ay ds

to

< C(log A(ty))~r+D(m=-1)+mp

= o(log A(ty)) )

cE—-(y+1D(m-1)+mp <1 (:,B<1+y(1—a)

AOIENW(E O + we (£, O] = Wy (6 O] = [Win (2, 9]
<cC /j(iexp (fi, 1bm(s, ©)1ds) Win (£, )

/’L(t A(t

|W (to, )| = |W1(to <)l



ToA(Te)lS] =N
A(ty)é] = N(log A(ty))Y*?

A: larger Influence of the properties

€]

stabilization y > 0

28




5. Concluding remarks
Theorem ([H., Inooka & Pham]).

m=>2 pf<1+y(1l—-1/m) = (GS).

- It will be prove that (GS) is not true if
B>1+y (cf. [H. 07D

* Necessity of the smoothness is open problem.

= Application to Kirchhoff equation.

= Application to weakly hyperbolic problems.



