
REGULARITY OF SOLUTIONS FOR A CLASS OF DEGENERATE

PARTIAL DIFFERENTIAL EQUATIONS†

HUA CHEN

School of Mathematics and Statistics, Wuhan University, China

Dedicated to the 60th birthday of Professor Yoshinori Morimoto

1. Introduction

What happened in the case of spatially inhomogeneous problems?
Consider following spatially inhomogeneous Boltzmann equation:

∂𝑡𝑓 + 𝑣 ⋅ ∂𝑥𝑓 = 𝑄(𝑓, 𝑓), 𝑡 ∈ ℝ+, (𝑥, 𝑣) ∈ ℝ𝑛 × ℝ𝑛.

∂𝑡 + 𝑣 ⋅ ∂𝑥 : transport operator

𝑄(𝑓, 𝑓) : Boltzmann’s collision operator given by

𝑄(𝑓, 𝑓)(𝑣) =

∫
ℝ𝑛

∫
𝕊𝑛−1

𝐵(𝑣 − 𝑣∗, 𝜏)
{
𝑓(𝑣′∗)𝑓(𝑣

′)− 𝑓(𝑣∗)𝑓(𝑣)
}
𝑑𝜏𝑑𝑣∗,

where 𝕊𝑛−1 is the (𝑛−1)−dimensional unit sphere and 𝜏 ∈ 𝕊𝑛−1, and 𝐵(𝑣−𝑣∗, 𝜏) is called
the Boltzmann’s collision kernel.
𝐵(𝑣−𝑣∗, 𝜏) is a non-negative function depending only on ∣𝑣 − 𝑣∗∣ and

〈
𝑣−𝑣∗
∣𝑣−𝑣∗∣ , 𝜏

〉
, Thus

𝐵(𝑣 − 𝑣∗, 𝜏) = 𝐵(∣𝑣 − 𝑣∗∣ , cos 𝜃), cos 𝜃 =

〈
𝑣 − 𝑣∗
∣𝑣 − 𝑣∗∣ , 𝜏

〉
.

𝜃 ∈ [0, 𝜋/2] : deviation angle

In particular,

𝐵(𝑣 − 𝑣∗, 𝜏) = Ψ(∣𝑣 − 𝑣∗∣)𝑏(cos 𝜃).
Two classical examples:

∙ Hard sphere collisions. In this case,

𝐵(𝑣 − 𝑣∗, 𝜏) = 𝐵(∣𝑣 − 𝑣∗∣ , cos 𝜃) = ∣𝑣 − 𝑣∗∣ sin 𝜃.
For fixed ∣𝑣 − 𝑣∗∣ , the function 𝜏 :−→ 𝐵(∣𝑣 − 𝑣∗∣ , 𝜏) is integrable in 𝕊𝑛−1.

∙ Grazing collisions. Above function is not integrable on 𝕊𝑛−1, typically with high
singularity near 𝜃 = 0.

A classical example is given by inverse power laws, that is, any two particles, apart from a
distance 𝑟, interact on each other by a force 1

𝑟𝑠 , 𝑠 > 2. In this case

𝐵(∣𝑣 − 𝑣∗∣ , cos 𝜃) = ∣𝑣 − 𝑣∗∣𝛾 𝑏(cos 𝜃), sin𝑛−2 𝜃 𝑏(cos 𝜃) ∼𝜃→0
𝐾

𝜃1+𝜈
,

where 𝐾 > 0, 𝛾 = 𝑠−5
𝑠−1 , and 𝜈 = 2/(𝑠− 1).

This singularity of the deviation angle 𝜃 causes additional difficulties in the mathematical
treatment of Boltzmann equation.

When 𝜃 ∼ 0, then

𝑏(cos 𝜃) ∼ 𝜃−𝑛+1−𝜈 ,
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the collision operator behaves essentially as a fractional power of the Laplacian:

𝑄(𝑓, 𝑓) = −𝐶𝑓 (−△𝑣)
𝜎𝑓 + high order regular terms,

where 𝜎
def
= 𝜈

2 ∈ (0, 1).
Related to the study of regularity for the solutions of the spatially inhomogeneous Boltz-

mann equation, we consider following linear model:

(1.1) 𝒫𝑓 = ∂𝑡𝑓 + 𝑣 ⋅ ∂𝑥𝑓 + 𝑎(𝑡, 𝑥, 𝑣)(−△𝑣)
𝜎𝑓 = 𝑔,

where 0 < 𝜎 < 1 and coefficient 𝑎(𝑡, 𝑥, 𝑣) is a strictly positive function.
In case of 𝜎 = 1, we get another model, i.e. Fokker-Planck equation

(1.2) ℒ𝑓 = ∂𝑡𝑓 + 𝑣 ⋅ ∂𝑥𝑓 − 𝑎(𝑡, 𝑥, 𝑣)△𝑣𝑓 = 𝑔,

which is actually related to the following spatially inhomogeneous Landau equation:

(1.3)

{
∂𝑡𝑓 + 𝑣 ⋅ ∂𝑥𝑓 = ∇𝑣 ⋅

{∫
ℝ3 𝑎(𝑣 − 𝑣∗)[𝑓(𝑣∗)∇𝑣𝑓(𝑣)− 𝑓(𝑣)∇𝑣𝑓(𝑣∗)]𝑑𝑣∗

}
,

𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣),

where 𝑥, 𝑣 ∈ ℝ3, 𝑡 ≥ 0 and 𝑎 = (𝑎𝑖𝑗) is a nonnegative symmetric matrix given by
𝑎𝑖𝑗(𝑣) = (𝛿𝑖𝑗 − 𝑣𝑖𝑣𝑗

∣𝑣∣2 )∣𝑣∣𝛾+2, 𝛾 ∈ [0, 1].

Set

𝑎̄𝑖𝑗(𝑡, 𝑥, 𝑣) = (𝑎𝑖𝑗 ∗ 𝑓)(𝑡, 𝑥, 𝑣) =
∫
ℝ3

𝑎𝑖𝑗(𝑣 − 𝑣∗)𝑓(𝑡, 𝑥, 𝑣∗)𝑑𝑣∗;

𝑐 = 𝑐 ∗ 𝑓, 𝑐 =
3∑

𝑖,𝑗=1

∂𝑣𝑖𝑣𝑗𝑎𝑖𝑗 = −2(𝛾 + 3)∣𝑣∣𝛾 .

Then the Cauchy problem (1.3) can be rewritten as

(1.4)

⎧⎨⎩ ∂𝑡𝑓 + 𝑣 ⋅ ∂𝑥𝑓 =

3∑
𝑖,𝑗=1

𝑎̄𝑖𝑗∂𝑣𝑖𝑣𝑗𝑓 − 𝑐𝑓,

𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣),

Here we shall consider such kind of kinetic equations in which the diffusion coefficient is
nonlinear function of velocity variable 𝑣. Namely, we shall consider following operator in
ℝ2𝑛+1:

𝒫 = ∂𝑡 + 𝑣 ⋅ ∂𝑥 + 𝑎(𝑡, 𝑥, 𝑣)(−△𝑣)
𝜎,

ℒ = ∂𝑡 + 𝑣 ⋅ ∂𝑥 − 𝑎(𝑡, 𝑥, 𝑣)△𝑣,(1.5)

where △𝑣 is Laplace operator of velocity variables 𝑣, 𝑎(𝑡, 𝑥, 𝑣) is a strictly positive function
in ℝ2𝑛+1.

Motivation to study the operators 𝒫 and ℒ
∙ Study the smoothness effect of linearized operators for spatially inhomogenous Lan-
dau equations or Boltzmann equations without angular cutoff.

∙ Other physical backgrounds (cf. Helffer-Nier, Lecture Notes in Math., 1862, Springer-
Verlag, Berlin, 2005).

Well-known results:

∙ 𝐶∞ regularity has been obtained by Alexandre-Ukai-Morimoto-Xu-Yang (2007)
for linear spatially inhomogeneous Boltzmann equation without angular cutoff (by
using the uncertainty principle and micro-local analysis);

∙ (1.5) satisfies the Hörmander’s condition⇒ (1.5) is 𝐶∞-Hypoelliptic;
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∙ By Derridj-Zuily (1973)⇒ (1.5) is 𝐺𝑠-Hypoelliptic for 𝑠 > 6.
Remark: In general, 𝑠 > 6 is not optimal, the best possible would be 𝑠 ≥ 3 (cf. L.
P. Rothschild-E. M. Stein, Hypoelliptic differential operators and nilpotent groups,
Acta. Math, 137 (1977), 248-315).

Results of This Talk:

∙ Gevrey regularity for the weak solution of linear and semi-linear kinetic equation
given in (1.1).

∙ Gevrey regularity for the weak solution of linear and semi-linear Fokker-Planck
equation given in (1.2).

Main Results:

Theorem 1.1. For any 𝑠 ≥ 3, if the positive coefficient 𝑎(𝑡, 𝑥, 𝑣) is in 𝐺𝑠(ℝ2𝑛+1), then
the operator ℒ given by (1.5) is 𝐺𝑠-hypoelliptic in ℝ2𝑛+1.

(JDE, 246 (2009),320-339)

Theorem 1.2. Let 0 < 𝜎 < 1 and 𝛿 = max
{
𝜎
4 ,

𝜎
2 − 1

6

}
. For any 𝑠 ≥ 2

𝛿 , if the positive

coefficient 𝑎(𝑡, 𝑥, 𝑣) is in 𝐺𝑠(ℝ2𝑛+1), then the operator 𝒫 given by (1.1) is 𝐺𝑠 hypoelliptic
in ℝ2𝑛+1.

(Comm. PDE, 2011)
Extension:

ℒ̃ = ∂𝑡 + (𝐴𝑣) ⋅ ∂𝑥 −
𝑛∑

𝑗,𝑘=1

𝑎𝑗𝑘(𝑡, 𝑥, 𝑣)∂
2
𝑣𝑗𝑣𝑘

,

where (𝑡, 𝑥, 𝑣) ∈ 𝑈 ⊂ ℝ2𝑛+1, 𝐴 is a non singular 𝑛 × 𝑛 constant matrix,
(
𝑎𝑗𝑘(𝑡, 𝑥, 𝑣)

)
is

positive defined on 𝑈 and belongs to 𝐺𝑠(𝑈).
Semi-linear Fokker-Planck equation:

(1.6) ℒ𝑢 = ∂𝑡𝑢+ 𝑣 ⋅ ∇𝑥𝑢− 𝑎(𝑡, 𝑥, 𝑣)△𝑣𝑢 = 𝐹 (𝑡, 𝑥, 𝑣, 𝑢,∇𝑣𝑢),

where 𝐹 (𝑡, 𝑥, 𝑣, 𝑤, 𝑝) is nonlinear function of real variable (𝑡, 𝑥, 𝑣, 𝑤, 𝑝), we have

Theorem 1.3. Under the condition of Theorem 1.1, let 𝑢 be a weak solution of the equation
(1.6), such that 𝑢 ∈ 𝐿∞

𝑙𝑜𝑐(ℝ2𝑛+1) and ∇𝑣𝑢 ∈ 𝐿∞
𝑙𝑜𝑐(ℝ2𝑛+1), then

𝑢 ∈ 𝐺𝑠(ℝ2𝑛+1)

for any 𝑠 ≥ 3, if the nonlinear function 𝐹 (𝑡, 𝑥, 𝑣, 𝑤, 𝑝) ∈ 𝐺𝑠(ℝ2𝑛+2+𝑛).

(JDE, 246 (2009),320-339)
Remark: If the nonlinear term 𝐹 (𝑡, 𝑥, 𝑣, 𝑤, 𝑝) is independent of 𝑝 or 𝐹 is in the form
of ∇𝑣𝐺(𝑡, 𝑥, 𝑣, 𝑢), then it is enough to suppose in Theorem 1.2 the weak solution 𝑢 ∈
𝐿∞
𝑙𝑜𝑐(ℝ2𝑛+1).
We consider now the semi-linear equation

(1.7) ∂𝑡𝑢+ 𝑣 ⋅ ∇𝑥𝑢+ 𝑎(−△𝑣)
𝜎𝑢 = 𝐹 (𝑡, 𝑥, 𝑣;𝑢),

where 𝐹 is a nonlinear function of real variable (𝑡, 𝑥, 𝑣, 𝑞). And we have the following
Gevrey regularity for the weak solution.

Theorem 1.4. Let 0 < 𝜎 < 1 and 𝛿 = max
{
𝜎
4 ,

𝜎
2 − 1

6

}
. Suppose 𝑢 ∈ 𝐿∞

𝑙𝑜𝑐(ℝ2𝑛+1) is a
weak solution of equation (1.7), then

𝑢 ∈ 𝐺𝑠(ℝ2𝑛+1)

for any 𝑠 ≥ 2
𝛿 , provided the coefficient 𝑎 is in 𝐺𝑠(ℝ2𝑛+1), 𝑎(𝑡, 𝑥, 𝑣) > 0 and nonlinear

function 𝐹 (𝑡, 𝑥, 𝑣, 𝑞) lies in 𝐺𝑠(ℝ2𝑛+2).

(Comm. PDE, 2011)
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2. Sub-elliptic estimates

Sharp Sub-elliptic Estimate:

Proposition 2.1. 𝐾 ⊂ ℝ2𝑛+1 compact. ∀𝑟 ≥ 0, ∃𝐶𝐾,𝑟 > 0, s.t. ∀𝑓 ∈ 𝐶∞
0 (𝐾),

(2.1) ∥𝑓∥𝑟 ≤ 𝐶𝐾,𝑟{ ∥ℒ𝑓∥𝑟−2/3 + ∥𝑓∥0 }.
Estimate Commutators of ℒ with differential operators and cut-off functions:

Proposition 2.2. 𝐾 ⊂ ℝ2𝑛+1 compact, then ∀𝑟 ≥ 0, ∃𝐶𝐾,𝑟 > 0, 𝐶𝐾,𝑟,𝜑 > 0, s.t. ∀𝑓 ∈
𝐶∞
0 (𝐾),

∥[ℒ, 𝐷]𝑓∥𝑟 ≤ 𝐶𝐾,𝑟{ ∥ℒ𝑓∥𝑟+1−2/3 + ∥𝑓∥0 },
and

∥[ℒ, 𝜑]𝑓∥𝑟 ≤ 𝐶𝐾,𝑟,𝜑{ ∥ℒ𝑓∥𝑟−1/3 + ∥𝑓∥0 },
where 𝜑 ∈ 𝐶∞

0 (ℝ2𝑛+1) and we denote by 𝐷 the differential operators ∂𝑡, ∂𝑥 or ∂𝑣.

Gevrey hypoellipticity of ℒ: Starting point due to M. Durand (1978):

Proposition 2.3. Let 𝑃 be a linear differential operator of second order with smooth
coefficients in ℝ𝑁

𝑦 and 𝜚, 𝜍 > 0 fixed. If ∀𝑟 ≥ 0, ∀𝐾 ⊆ ℝ𝑁 , ∀𝜑 ∈ 𝐶∞(ℝ𝑁 ), ∃𝐶𝐾,𝑟,
∃𝐶𝐾,𝑟(𝜑), s.t. ∀𝑓 ∈ 𝐶∞

0 (𝐾),

(𝐻1) ∥𝑓∥𝑟 ≤ 𝐶𝐾,𝑟(∥𝑃𝑓∥𝑟−𝜚 + ∥𝑓∥0),
(𝐻2) ∥[𝑃, 𝐷𝑗 ]𝑓∥𝑟 ≤ 𝐶𝐾,𝑟(∥𝑃𝑓∥𝑟+1−𝜍 + ∥𝑓∥0),
(𝐻3) ∥[𝑃, 𝜑]𝑓∥𝑟 ≤ 𝐶𝐾,𝑟(𝜑)(∥𝑃𝑓∥𝑟−𝜍 + ∥𝑓∥0),
where

𝐷𝑗 =
1

𝑖

∂

∂𝑦𝑗
, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁.

Then for 𝑠 ≥ max(1/𝜍, 2/𝜚), 𝑃 is 𝐺𝑠(ℝ𝑁 ) hypoelliptic, provided the coefficients of 𝑃 are
in the class of 𝐺𝑠(ℝ𝑁 ).

Proof of Theorem 1.1
Proposition 2.1 shows that the operator ℒ satisfies the conditions (𝐻1) with 𝜚 = 2/3,

Proposition 2.2 assures the conditions (𝐻2) and (𝐻3) with 𝜍 = 1/3. Then max(1/𝜍, 2/𝜚) =
3, ℒ is 𝐺𝑠(ℝ2𝑛+1) hypoelliptic for 𝑠 ≥ 3, and we have proved Thereom 1.1.

Proof of Theorem 1.2
The proof of Theorem 1.2 depends on following sub-elliptic estimate:
There exists a compact 𝐾 ⊂ ℝ2𝑛+1, and for ∀𝑟 ≥ 0, ∃𝐶𝐾,𝑟 > 0, s.t. ∀𝑓 ∈ 𝐶∞

0 (𝐾),

(2.2) ∥𝑓∥𝑟 ≤ 𝐶𝐾,𝑟{ ∥𝒫𝑓∥𝑟−𝛿 + ∥𝑓∥0 },

where 𝛿 = max
{
𝜎
4 ,

𝜎
2 − 1

6

}
.

Remark: Very recently, N. Lerner, Y. Morimoto and K. Pravda-Starov proved following
optimal sub-elliptic estimate for the operator 𝒫:

(2.3) ∥𝑓∥𝑟 ≤ 𝐶𝐾,𝑟{ ∥𝒫𝑓∥𝑟−𝛿1 + ∥𝑓∥0 },

where 𝛿1 =
2𝜎

2𝜎+1(> 𝛿 = max
{
𝜎
4 ,

𝜎
2 − 1

6

}
), which implies the optimal hypoellipticity for the

operator 𝒫 would be 𝐺𝑠-regular in ℝ2𝑛+1 for all 𝑠 ≥ 2
𝛿1
. This coincides with the result of

Theorem 1.1 in case of 𝜎 = 1.
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3. Gevrey regularity of nonlinear equations

Let 𝑢 ∈ 𝐿∞
𝑙𝑜𝑐(ℝ2𝑛+1), a weak solution of (1.6), we need to prove 𝑢 ∈ 𝐶∞(ℝ2𝑛+1), and

then to prove 𝑢 ∈ 𝐺𝑠(ℝ2𝑛+1)

Proposition 3.1. Let 𝑢 be a weak solution of (1.6) such that 𝑢,∇𝑣𝑢 ∈ 𝐿∞
𝑙𝑜𝑐(ℝ2𝑛+1). Then

𝑢 is in 𝐶∞(ℝ2𝑛+1).

Proof of Proposition 3.1 depends on following results:

Lemma 3.2. Let 𝐹 (𝑡, 𝑥, 𝑣, 𝑤, 𝑝) ∈ 𝐶∞(ℝ2𝑛+2+𝑛) and 𝑟 ≥ 0. If 𝑢,∇𝑣𝑢 ∈ 𝐿∞
𝑙𝑜𝑐(ℝ2𝑛+1) ∩

𝐻𝑟
𝑙𝑜𝑐(ℝ2𝑛+1), then 𝐹

(⋅, 𝑢(⋅),∇𝑣𝑢(⋅)
) ∈ 𝐻𝑟

𝑙𝑜𝑐(ℝ2𝑛+1), and

(3.1)
∥∥𝜙1𝐹 (⋅, 𝑢(⋅),∇𝑣𝑢(⋅)

)∥∥
𝑟
≤ 𝐶 { ∥𝜙2𝑢∥𝑟 + ∥𝜙2∇𝑣𝑢∥𝑟 } ,

where 𝜙1, 𝜙2 ∈ 𝐶∞
0 (ℝ2𝑛+1) and 𝜙2 = 1 on the support of 𝜙1, and 𝐶 is a constant depending

only on 𝑟, 𝜙1, 𝜙2.

Remark. If the nonlinear term 𝐹 is independent of 𝑝 or in the form of

∇𝑣(𝐹 (𝑡, 𝑥, 𝑣, 𝑢)),

Then that 𝑢 ∈ 𝐿∞
𝑙𝑜𝑐(ℝ2𝑛+1) ∩𝐻𝑟

𝑙𝑜𝑐(ℝ2𝑛+1) yields 𝐹
(⋅, 𝑢(⋅), ∇𝑣𝑢(⋅)

) ∈ 𝐻𝑟
𝑙𝑜𝑐(ℝ2𝑛+1).

Lemma 3.3. Let 𝑢, ∇𝑣𝑢 ∈ 𝐻𝑟
𝑙𝑜𝑐(ℝ2𝑛+1), 𝑟 ≥ 0. Then we have

(3.2) ∥𝜑1∇𝑣𝑢∥𝑟 ≤ 𝐶 ∥𝜑2𝑢∥𝑟 ,
where 𝜑1, 𝜑2 ∈ 𝐶∞

0 (ℝ2𝑛+1) and 𝜑2 = 1 on the support of 𝜑1, and 𝐶 is a constant depending
only on 𝑟, 𝜑1, 𝜑2.

Proof of Proposition 3.1:
In fact, from the sub-elliptic estimate (2.1) and the fact ℒ𝑢(⋅) = 𝐹 (⋅, 𝑢(⋅),∇𝑣𝑢(⋅)), it

then follows

∥𝜓1𝑢∥𝑟+2/3 ≤ 𝐶{ ∥𝜓2𝐹
(⋅, 𝑢(⋅),∇𝑣𝑢(⋅)

)∥𝑟 + ∥𝜓2𝑢∥0 },(3.3)

where 𝜓1, 𝜓2 ∈ 𝐶∞
0 (ℝ2𝑛+1) and 𝜓2 = 1 on the support of 𝜓1. Combining (3.1), (3.2)

and (3.3), we have 𝑢 ∈ 𝐻∞
𝑙𝑜𝑐(ℝ2𝑛+1) by standard iteration. This completes the proof of

Proposition 3.1.
Now starting from the smooth solution, we can then prove the solution has Gevrey

Regularity. It suffices to show the Gevrey regularity in an open unit ball

Ω = {(𝑡, 𝑥, 𝑣) ∈ ℝ2𝑛+1 : 𝑡2 + ∣𝑥∣2 + ∣𝑣∣2 < 1}.
Set

Ω𝜌 =
{
(𝑡, 𝑥, 𝑣) ∈ Ω :

(
𝑡2 + ∣𝑥∣2 + ∣𝑣∣2)1/2 < 1− 𝜌

}
, 0 < 𝜌 < 1.

Let 𝑈 be an open subset of ℝ2𝑛+1. Denote by𝐻𝑟(𝑈) the space consisting of the functions
which are defined in 𝑈 and can be extended to 𝐻𝑟(ℝ2𝑛+1). Define

∥𝑢∥𝐻𝑟(𝑈) = inf
{∥𝑢̃∥𝐻𝑠(ℝ𝑛+1) : 𝑢̃ ∈ 𝐻𝑠(ℝ2𝑛+1), 𝑢̃∣𝑈 = 𝑢

}
.

We denote ∥𝑢∥𝑟,𝑈 = ∥𝑢∥𝐻𝑟(𝑈), and

∥∂𝑗𝑥𝑢∥𝑟 =
∑
∣𝛽∣=𝑗

∥𝐷𝛽
𝑥𝑢∥𝑟, 𝑥 ∈ ℝ𝑚.

In order to treat the nonlinear term 𝐹 on the right hand side of (1.6), we need following
two lemmas.

Lemma 3.4. Let 𝑟 > (2𝑛 + 1)/2 and 𝑢1, 𝑢2 ∈ 𝐻𝑟(ℝ2𝑛+1), Then 𝑢1𝑢2 ∈ 𝐻𝑟(ℝ2𝑛+1),
moreover

∥𝑢1𝑢2∥𝑟 ≤ 𝐶∥𝑢1∥𝑟∥𝑢2∥𝑟,(3.4)

where 𝐶 is a constant depending only on 𝑛, 𝑟.
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Lemma 3.5. Let 𝑀𝑗 be a sequence of positive numbers and for some 𝐵0 > 0, 𝑀𝑗 satisfy
following monotonicity conditions

(3.5)
𝑗!

𝑖!(𝑗 − 𝑖)!
𝑀𝑖𝑀𝑗−𝑖 ≤ 𝐵0𝑀𝑗 , (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑗; 𝑗 = 1, 2, ⋅ ⋅ ⋅ ).

Suppose 𝐹 (𝑡, 𝑥, 𝑣, 𝑢, 𝑝) satisfies (for 𝑗, 𝑚+ 𝑙 ≥ 2)

(3.6)
∥∥(∂𝑗𝑡,𝑥,𝑣𝐷𝑙

𝑢∂
𝑚
𝑝 𝐹

) (⋅, 𝑢(⋅),∇𝑣𝑢(⋅)
)∥∥

𝑟+𝑛+1,Ω
≤ 𝐶𝑗+𝑙+𝑚

1 𝑀𝑗−2𝑀𝑚+𝑙−2,

where 𝑟 is a real number, satisfying 𝑟+𝑛+1 > (2𝑛+1)/2. Then there exist two constants
𝐶2, 𝐶3 such that for any 𝐻0, 𝐻1 satisfying 𝐻0, 𝐻1 ≥ 1 and 𝐻1 ≥ 𝐶2𝐻0, if 𝑢(𝑡, 𝑥, 𝑣)
satisfies following conditions

(3.7) ∥∂𝑗𝑡,𝑥,𝑣𝑢∥𝑟+𝑛+1,Ω𝜌 ≤ 𝐻0, 0 ≤ 𝑗 ≤ 1,

(3.8) ∥∂𝑗𝑡,𝑥,𝑣𝑢∥𝑟+𝑛+1,Ω𝜌 ≤ 𝐻0𝐻
𝑗−2
1 𝑀𝑗−2, 2 ≤ 𝑗 ≤ 𝑁,

(3.9) ∥𝐷𝑣∂
𝑗
𝑡,𝑥,𝑣𝑢∥𝑟+𝑛+1,Ω𝜌 ≤ 𝐻0𝐻

𝑗−2
1 𝑀𝑗−2, 2 ≤ 𝑗 ≤ 𝑁,

then for all 𝛼 with ∣𝛼∣ = 𝑁 ,∥∥𝜓𝑁𝐷
𝛼
[
𝐹
(⋅, 𝑢(⋅),∇𝑣𝑢(⋅)

)]∥∥
𝑟+𝑛+1

≤ 𝐶3𝐻0𝐻
𝑁−2
1 𝑀𝑁−2,(3.10)

where 𝜓𝑁 ∈ 𝐶∞
0 (Ω𝜌) is an arbitrary function.

Key Estimate:

Proposition 3.6. Let 𝑠 ≥ 3. Suppose 𝑢 ∈ 𝐶∞(Ω̄) is a solution of (1.6), and 𝑎(𝑡, 𝑥, 𝑣) ∈
𝐺𝑠(ℝ2𝑛+1), 𝐹 (𝑡, 𝑥, 𝑣, 𝑤, 𝑝) ∈ 𝐺𝑠(ℝ2𝑛+2+𝑛) and 𝑎(𝑡, 𝑥, 𝑣) ≥ 𝑐0 > 0. Then there exits a
constant 𝐴 such that for any 𝑟 ∈ [0, 1] and any 𝑁 ∈ ℕ, 𝑁 ≥ 3,

(𝐸)𝑟,𝑁 ∥𝐷𝛼𝑢∥𝑟+𝑛+1,Ω𝜌 + ∥𝐷𝑣𝐷
𝛼𝑢∥𝑟−1/3+𝑛+1,Ω𝜌

≤ 𝐴∣𝛼∣−1

𝜌𝑠(∣𝛼∣−3)

(
(∣𝛼∣ − 3)!

)𝑠
(𝑁/𝜌)𝑠𝑟, ∀ ∣𝛼∣ = 𝑁, ∀ 0 < 𝜌 < 1.

From Proposition 3.6, we have immediately

Corollary 3.7. Under the same assumption as Proposition 3.6, we have 𝑢 ∈ 𝐺𝑠(Ω).

In fact, for any compact subset 𝐾 of Ω, we have 𝐾 ⊂ Ω𝜌0 for some 𝜌0, 0 < 𝜌0 < 1. For
any 𝛼, ∣𝛼∣ ≥ 3, letting 𝑟 = 0 in (𝐸)𝑟,𝑁 , we have

∥𝐷𝛼𝑢∥𝐿2(𝐾) ≤ ∥𝐷𝛼𝑢∥𝑛+1,Ω𝜌0
≤ 𝐴∣𝛼∣−1

𝜌0𝑠(∣𝛼∣−3)

(
(∣𝛼∣ − 3)!

)𝑠 ≤ (
𝐴
𝜌0𝑠

)∣𝛼∣+1
(∣𝛼∣!)𝑠.

This completes the proof of Corollary 3.7

4. Smoothness effects of solutions for Cauchy problem
of the spatially homogeneous Landau equation

Let

(4.1)

{
∂𝑡𝑓 = ∇𝑣 ⋅

{ ∫
ℝ3 𝑎(𝑣 − 𝑣∗)[𝑓(𝑣∗)∇𝑣𝑓(𝑣)− 𝑓(𝑣)∇𝑣𝑓(𝑣∗)]𝑑𝑣∗

}
,

𝑓(0, 𝑣) = 𝑓0(𝑣),

where 𝑓(𝑡, 𝑣) ≥ 0 stands for the density of particles with velocity 𝑣 ∈ ℝ3 at time 𝑡 ≥ 0,
and (𝑎𝑖𝑗) is a nonnegative symmetric matrix given by

(4.2) 𝑎𝑖𝑗(𝑣) =

(
𝛿𝑖𝑗 − 𝑣𝑖𝑣𝑗

∣𝑣∣2
)
∣𝑣∣𝛾+2 .

We only consider here the condition 𝛾 ∈ [0, 1]. It’s called the hard potential case when
𝛾 ∈]0, 1] and the Maxwellian molecules case when 𝛾 = 0.
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Set 𝑐 =
∑3

𝑖,𝑗=1 ∂𝑣𝑖𝑣𝑗𝑎𝑖𝑗 = −2(𝛾 + 3) ∣𝑣∣𝛾 and

𝑎̄𝑖𝑗(𝑡, 𝑣) = (𝑎𝑖𝑗 ∗ 𝑓) (𝑡, 𝑣) =
∫
ℝ3

𝑎𝑖𝑗(𝑣 − 𝑣∗)𝑓(𝑡, 𝑣∗)𝑑𝑣∗, 𝑐 = 𝑐 ∗ 𝑓.

Then the Cauchy problem (4.1) can be rewritten as the following form,

(4.3)

{
∂𝑡𝑓 =

∑3
𝑖,𝑗=1 𝑎̄𝑖𝑗∂𝑣𝑖𝑣𝑗𝑓 − 𝑐𝑓,

𝑓(0, 𝑣) = 𝑓0(𝑣).

This is a non-linear diffusion equation, and the coefficients 𝑎̄𝑖𝑗 , 𝑐 depend on the solution 𝑓 .
Denote by 𝑀(𝑓(𝑡)), 𝐸(𝑓(𝑡)) and 𝐻(𝑓(𝑡)) respectively the mass, energy and entropy of

the function 𝑓(𝑡), i.e.,

𝑀(𝑓(𝑡)) =

∫
ℝ3

𝑓(𝑡, 𝑣) 𝑑𝑣, 𝐸(𝑓(𝑡)) =
1

2

∫
ℝ3

𝑓(𝑡, 𝑣) ∣𝑣∣2 𝑑𝑣,

𝐻(𝑓(𝑡)) =

∫
ℝ3

𝑓(𝑡, 𝑣) log 𝑓(𝑡, 𝑣) 𝑑𝑣,

and

∥∂𝛼𝑓(𝑡, ⋅)∥𝑝
𝐿𝑝
𝑠
= ∥∂𝛼𝑓(𝑡)∥𝑝

𝐿𝑝
𝑠
=

∫
ℝ3

∣∂𝛼𝑓(𝑡, 𝑣)∣𝑝
(
1 + ∣𝑣∣2

)𝑠/2
𝑑𝑣, for 𝑝 ≥ 1,

∥𝑓(𝑡, ⋅)∥2𝐻𝑚
𝑠

= ∥𝑓(𝑡)∥2𝐻𝑚
𝑠

=
∑

∣𝛼∣≤𝑚

∥∂𝛼𝑓(𝑡, ⋅)∥2𝐿2
𝑠
.

We have

Theorem 4.1. Let 𝑓0 be the initial datum with finite mass, energy and entropy and 𝑓 be
any solution of the Cauchy problem (4.3) such that for all 𝑡0, 𝑡1 with 0 < 𝑡0 < 𝑡1 < +∞,
and all integer 𝑚 ≥ 0,

(4.4) sup
𝑡∈[𝑡0,𝑡1]

∥𝑓(𝑡, ⋅)∥𝐻𝑚
𝛾
< +∞.

Then for any number 𝜎 > 1, we have 𝑓(𝑡, ⋅) ∈ 𝐺𝜎(ℝ3) for all time 𝑡 > 0.

(Acta Math. Scientia, 29B(3), 673-686(2009), Special volume for Prof. WU Wenjun
90th birthday)
Remark. From Desvillettes-Villani [Comm PDE, Vol.25 (2000)], if 𝑓0 ∈ 𝐿1

2+𝛿 with 𝛿 > 0),
then the condition (4.4) would be satisfied (i.e. 𝐶∞ smoothness effect).

Furthermore, we have

Theorem 4.2. Let 𝑓0 be the initial datum with finite mass, energy and entropy and 𝑓 be
any solution of the Cauchy problem (4.3) such that for all 𝑡0, 𝑡1 with 0 < 𝑡0 < 𝑡1 < +∞,
and all integer 𝑚 ≥ 0,

(4.5) sup
𝑡∈[𝑡0,𝑡1]

∥𝑓(𝑡, ⋅)∥𝐻𝑚
𝛾
< +∞.

Then for all time 𝑡 > 0, 𝑓(𝑡, ⋅), as a real function of 𝑣 variable, is analytic in ℝ3
𝑣. Moreover,

for all time 𝑡0 > 0, there exists a constant 𝑐0 > 0, depending only on 𝑀0, 𝐸0, 𝐻0, 𝛾 and 𝑡0,
such that for all 𝑡 ≥ 𝑡0, ∥∥∥∥𝑒𝑐0(−△𝑣)

1
2 𝑓(𝑡, ⋅)

∥∥∥∥
𝐿2(ℝ3)

≤ 𝐶(𝑡+ 1),

where 𝐶 is a constant depending only on 𝑀0, 𝐸0,𝐻0, 𝛾 and 𝑡0.
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(JDE, 248, 77-94 (2010))
Remark. In Maxwellian molecules case, Morimoto-Xu (JDE, 247(2009), 596–617) even
proved the ultra-analyticity for the solution of the Cauchy problem (4.3).

Ultra-Analyticity:
Definition. 𝑓 ∈ 𝐴𝑠(Ω) for 0 < 𝑠 < +∞, if 𝑓 ∈ 𝐶∞(Ω) and ∃𝐶 > 0, 𝑁0 > 0, such that

∀𝛼 ∈ ℕ𝑛, ∣𝛼∣ ≥ 𝑁0,

∥∂𝛼𝑓(𝑥)∥𝐿2(Ω) ≤ 𝐶 ∣𝛼∣+1(∣𝛼∣!)𝑠.
If Ω = ℝ𝑛, then 𝑓 ∈ 𝐴𝑠(ℝ𝑛) iff

𝑒𝑐0(−△)1/2𝑠(∂𝛽0𝑓) ∈ 𝐿2(ℝ𝑛), ∃𝑐0 > 0, 𝛽0 ∈ ℕ𝑛.

Thus
1) 𝐴𝑠1 ⊂ 𝐴𝑠2 if 𝑠1 < 𝑠2;
2) 𝐴𝑠 = 𝐺𝑠, for 𝑠 > 1;
3) 𝐴1 = Analytic class;
4) 𝐴𝑠 is ultra-analytic for 0 < 𝑠 < 1;
5) Any polynomial 𝑃 (𝑥) is ultra-analytic for any 𝑠 > 0.
Examples.
1) Heat operator: {

∂𝑡𝑢−△𝑥𝑢 = 0, 𝑥 ∈ ℝ𝑛, 𝑡 > 0,
𝑢∣𝑡=0 = 𝑢0 ∈ 𝐿2(ℝ𝑛).

Then 𝑢(𝑡, ⋅) = 𝑒𝑡△𝑥𝑢0 ∈ 𝐴
1
2 (ℝ𝑛) for 𝑡 > 0.

2) Kolmogorov operator:{
∂𝑡𝑢+ 𝑣 ⋅ ∂𝑥𝑢−△𝑣𝑢 = 0, (𝑥, 𝑣) ∈ ℝ2𝑛, 𝑡 > 0,
𝑢∣𝑡=0 = 𝑢0 ∈ 𝐿2(ℝ2𝑛).

Then 𝑢̂(𝑡, 𝜂, 𝜉) = 𝑒−
∫ 𝑡
0 ∣𝜉+𝑠𝜂∣2𝑑𝑠𝑢0(𝜂, 𝜉 + 𝑡𝜂), i.e. for some 𝑐0 > 0, we have 𝑢(𝑡, ⋅, ⋅) =

𝑒𝑐0(𝑡△𝑣+𝑡3△𝑥)𝑢0 ∈ 𝐴
1
2 (ℝ2𝑛) for 𝑡 > 0.

Remark: It is surprise to say the ultra-analytic smoothness effect phenomenon for the
Kolmogorov equation is similar to 2𝑛-dimensional heat equation. That means, in some
sense, the operator 𝑣 ⋅ ∂𝑥 − △𝑣 is equivalent to 2𝑛-dimensional Laplace operator △𝑥,𝑣 by
time evolutions. But the operator ∂𝑡 + 𝑣 ⋅ ∂𝑥 is only a transport operator with respect to
spatial variables.

3) Generalized Kolmogorov operators:{
∂𝑡𝑢+ 𝑣 ⋅ ∂𝑥𝑢+ (−△𝑣)

𝜎𝑢 = 0, (𝑥, 𝑣) ∈ ℝ2𝑛, 𝑡 > 0,
𝑢∣𝑡=0 = 𝑢0 ∈ 𝐿2(ℝ2𝑛), 0 < 𝜎 < +∞.

Then 𝑢̂(𝑡, 𝜂, 𝜉) = 𝑒−
∫ 𝑡
0 ∣𝜉+𝑠𝜂∣2𝜎𝑑𝑠𝑢0(𝜂, 𝜉 + 𝑡𝜂), i.e. for some 𝑐0 > 0, we have 𝑢(𝑡, ⋅, ⋅) =

𝑒−𝑐0(𝑡(−△𝑣)𝜎+𝑡2𝜎+1(−△𝑥)𝜎)𝑢0 ∈ 𝐴
1
2𝜎 (ℝ2𝑛) for 𝑡 > 0.

Thus, for 𝜎 > 1
2 , we can get ultra-analytic smoothing effect in 𝐴

1
2𝜎 (ℝ2𝑛).

Comparing Results with Heat Operator:
1) Heat operator 𝐻 = ∂𝑡 −△𝑥,𝑣 is 𝐺2(ℝ2𝑛+1) hypoelliptic;
2) Fokker-Planck operator ℒ = ∂𝑡 + 𝑣 ⋅ ∂𝑥𝑓 − 𝑎(𝑡, 𝑥, 𝑣)△𝑣 is 𝐺3(ℝ2𝑛+1) hypoelliptic, cf.

Chen-Li-Xu’s result in 2008 (JDE, 246 (2009), 320-339);

3) The operator 𝒫 = ∂𝑡+𝑣 ⋅∂𝑥+𝑎(𝑡, 𝑥, 𝑣)(−△𝑣)
𝜎, 0 < 𝜎 < 1, is 𝐺

2
𝛿 (ℝ2𝑛+1) hypoelliptic,

where 𝛿 = max{𝜎
4 ,

𝜎
2 − 1

6}, cf. Chen-Li-Xu’s result in 2009 (Comm. in PDE, 2011); and

is 𝐺
2
𝛿1 (ℝ2𝑛+1) hypoelliptic, where 𝛿1 = 2𝜎

2𝜎+1 , which can be deduced by Lerner-Morimoto-
Pravda-Starov’s recent result on optimal sub-elliptic estimate for the operator 𝒫.

Optimal Smoothing Effect for Cauchy Problems:
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1) For Heat Equation, we have 𝐴
1
2 ultra-analytic effect for 𝑡 > 0, i.e. 𝑢(𝑡, ⋅) ∈ 𝐴

1
2 (ℝ𝑛)

for 𝑡 > 0.
2) For Fokker-Planck Equation (with 𝑎(𝑡, 𝑥, 𝑣) = 1, i.e. Kolmogorov Equation), we have

also 𝐴
1
2 ultra-analytic effect for 𝑡 > 0, i.e. 𝑢(𝑡, ⋅, ⋅) ∈ 𝐴

1
2 (ℝ2𝑛) for 𝑡 > 0.

3) For spatially homogeneous Landau equation:{
∂𝑡𝑓 =

∑3
𝑖,𝑗=1 𝑎̄𝑖𝑗∂𝑣𝑖𝑣𝑗𝑓 − 𝑐𝑓,

𝑓(0, 𝑣) = 𝑓0(𝑣).

In Maxwellian molecules case, we have 𝐴
1
2 ultra-analytic effect for 𝑡 > 0, i.e. in the case of

𝑎𝑖𝑗(𝑣) =
(
𝛿𝑖𝑗 − 𝑣𝑖𝑣𝑗

∣𝑣∣2
)
∣𝑣∣2 (2nd order polynomial in 𝑣), the solution of the Cauchy problem

𝑢(𝑡, ⋅) ∈ 𝐴
1
2 (ℝ𝑛) for 𝑡 > 0. In hard potential case, we have 𝐴1-analytic effect for 𝑡 > 0, i.e.

in the case of 𝑎𝑖𝑗(𝑣) =
(
𝛿𝑖𝑗 − 𝑣𝑖𝑣𝑗

∣𝑣∣2
)
∣𝑣∣𝛾+2, for 𝛾 ∈]0, 1], the solution of the Cauchy problem

𝑢(𝑡, ⋅) ∈ 𝐴1(ℝ𝑛) for 𝑡 > 0.

5. Regularity of Solutions for Subelliptic Monge-Ampère Equations

Let us consider following real Monge-Ampère equation:

(5.1) 𝐹 (𝑢𝑖𝑗) = det(𝑢𝑖𝑗) = 𝑘(𝑥), 𝑥 ∈ Ω ⊂ ℝ𝑛,

where 𝑢𝑖𝑗 =
∂2𝑢
𝑥𝑖𝑥𝑗

(𝑥). We assume that

1) 𝐻 = (𝑢𝑖𝑗) is a non-negative defined matrix on Ω;
2) Hypersurface 𝑆 = {(𝑥, 𝑢(𝑥));𝑥 ∈ Ω} is convex (but not strict);
3) 𝑘(𝑥) ≥ 0 on Ω.

Well-known results:
1) 𝑘 > 0, non-degenerate case, regularity is well-known (Equation (5.1) is elliptic, c.f.

Caffarelli-Nirenberg-Spruck, CPAM, 37(1984) for Dirichlet problem). Then 𝑢 ∈ 𝐶∞ if
𝑘 ∈ 𝐶∞ and 𝑢 is analytic if 𝑘 is analytic.

2) In degenerate case,

(5.2) Σ𝑘 = {𝑥 ∈ Ω; 𝑘(𝑥) = 0,∇𝑘(𝑥) = 0} ∕= ∅,
the regularity problem would be complicated. (Existence and uniqueness have been studied
by Guan-Trudinger-Wang, Acta Math, 182 (1999).)

3) Monge-Ampère equation has a 𝐶∞ convex local solution if the order of degenerate
point for the smooth coefficient 𝑘 is finite (c.f. Hong-Zuily, Invent. Math. 89, 645-661
(1987)).

4) For regularity result, Zuily proved that, for the degenerate Monge-Ampère equation,
if the solution 𝑢 ∈ 𝐶𝜌 for 𝜌 > 4, then 𝑢 will be 𝐶∞ smooth (c.f. Zuily, Annali della Scuola
Normale Superiore di Pisa, Classe di Scienze 4𝑒 série, 11(4), 529-554 (1988); we would say
more for this result in details).

5) In case of 𝑘 ≥ 0, a 𝐶∞-smooth function, but vanishes in Ω, in general, the optimal
regularity of solutions is 𝐶1,1 (c.f. Guan, Duke Math J., 86 (1997)).

Main difficulties: 1) Fully nonlinear; 2) Degeneracy.
Basic Question: When is a solution 𝑢 of (5.1) smooth, or better than 𝐶1,1?
One may expect 𝑢 to be smooth if the decay of 𝑘 near its null set is under control, say

of finite type. Unfortunately, this is not true:

Example 1. Function 𝑢(𝑥) = ∣𝑥∣2+ 2
𝑛 ∈ 𝐶2,2/𝑛 (/∈ 𝐶3) solves the equation (5.1) with

polynomial data 𝑘(𝑥) = 𝑐𝑛∣𝑥∣2 (analytic, vanishing at only one point of order 2).
What is wrong with the Example 1 is that the mean curvature of hypersurface (𝑥, 𝑢(𝑥))

is vanishing at the point 𝑘 = 0. This suggests that we should only expect higher regularity
of the solution 𝑢 of (5.1) away from the planar points of the hypersurface (𝑥, 𝑢(𝑥)).
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Example 2. Zuily (1988) extended above counter-example to the general cases, i.e. for
any integer 𝑙 ≥ 2, ∃𝑘(𝑥) ≥ 0, analytic, such that the Monge-Ampère equation (5.1) admit
a solution in 𝐶 𝑙, but not in 𝐶 𝑙+1 (There are a lot of examples for non-smooth solutions of
Dirichlet problems).

Example 3. If 𝑛 = 2, 𝑘(𝑥, 𝑦) = 𝑥2, then

𝑢(𝑥, 𝑦) =
1

12
𝑥4 +

1

2
𝑦2, (i.e. 𝑢𝑦𝑦 > 0)

is a analytic solution .
So it is reasonable to find the conditions on Σ𝑘 and also on the geometry of 𝑆 =

{(𝑥, 𝑢(𝑥));𝑥 ∈ Ω} to guarantee the regularity of the weak solutions.
The result of Zuily (1988):

We consider the linearized operator,

(5.3) 𝑃𝑢 =
𝑛∑

𝑖,𝑗=1

∂𝐹

∂𝑢𝑖𝑗
(𝑢𝑙𝑘)∂

2
𝑖𝑗 ,

where ∂𝐹
∂𝑢𝑖𝑗

(𝑢𝑙𝑘) is the co-factor of 𝑢𝑖𝑗 in the matrix 𝐻. Then the co-matrix 𝐻̃ of 𝐻 is

also non-negative defined, so the second order operator 𝑃𝑢 is degenerate elliptic if Σ𝑘 ∕= ∅.
Denote 𝑙̃𝛼(𝑥) = 𝑙𝛼(𝑢𝑙𝑘(𝑥)) the 𝛼-line of the matrix 𝐻̃, then Zuily (1988) proved that

Proposition 5.1. Let 𝑘(𝑥) ∈ 𝐶∞, 𝑘 ≥ 0, and 𝑢(𝑥) ∈ 𝐶4,𝛿 is a solution of Monge-Ampère
equation (5.1). Suppose that for any 𝑥 ∈ Σ𝑘, ∃1 ≤ 𝛼 ≤ 𝑛, such that

(5.4) < ∇2𝑘(𝑥)𝑙̃𝛼, 𝑙̃𝛼 >∕= 0,

then the solution 𝑢(𝑥) ∈ 𝐶∞.

Remarks:
(i) No conditions required in out of Σ𝑘, since the equation is elliptic

on Ω∖Σ𝑘.
(ii) If ∇2𝑘(𝑥) is positive defined, then the condition (5.4) is satisfied.

So any 𝐶4,𝛿 solution would be 𝐶∞ smooth. But Example 1 shows
that the initial regularity of the solution is important.

(iii) In 2-dimensional case, in Example 3, 𝑘(𝑥, 𝑦) = 𝑥2, the condition
(5.4) means 𝑢𝑦𝑦(0, 𝑦) ∕= 0 (in fact, 𝑢𝑦𝑦(0, 𝑦) = 1 > 0).

6. Main Result for Monge-Ampère Equations

Let us consider regularity of solution to following two-dimensional Monge-Ampère equa-
tion

(6.1) 𝑢𝑥𝑥𝑢𝑦𝑦 − 𝑢2𝑥𝑦 = 𝑘(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω ⊂ ℝ2,

where Ω is neighborhood of origin, 𝑘 is a nonnegative function.
By using the classic partial Legendre transformation, the equation (6.1) can be deduced

as following divergence form quasi-linear equation:

(6.2) ∂𝑠𝑠𝑤(𝑠, 𝑡) + ∂𝑡 {𝑘(𝑠, 𝑤(𝑠, 𝑡))∂𝑡𝑤(𝑠, 𝑡)} = 0.

In the 70’s, there were many works on studying the hypoellipticity of linear degenerate
elliptic equations (i.e. Hörmander’s operators). Baouendi-Goulaouic (1971) gave following
example in ℝ3:

(6.3) 𝑃𝑢 = (∂2𝑥 + ∂2𝑦 + 𝑦2∂2𝑧 )𝑢 = 𝑓.

We know:

∙ The operator 𝑃 is 𝐶∞ hypoelliptic.



REGULARITY OF SOLUTIONS FOR DEGENERATE PDES 11

∙ The operator 𝑃 is not analytical hypoelliptic (Baouendi-Goulaouic even proved
that there is a analytic function 𝑓 , such that the solution 𝑢 ∈ 𝐺𝑠 with 𝑠 > 2, but
not belongs to 𝐺𝑠 for 𝑠 < 2).

∙ Derridj-Zuily (1972) proved the Gevrey regularity for such kind of Hörmander’s
operators (also in 2-dimensional case, the operator ∂2𝑥 + 𝑥2∂2𝑦 is 𝐺𝑠 hypoelliptic for
any 𝑠 ≥ 1).

For Monge-Ampère equation, in order to get higher regularity, we need following rea-
sonable conditions:
(I) Condition for 𝑘 (i.e. condition on Σ𝑘):
𝑘 ≥ 0, 𝐶∞(ℝ2) smooth,
𝑘 vanishes in Ω with finite order, i.e., ∃𝑐 > 1, such that

𝑐−1(𝑥2𝑙 +𝐴𝑦2𝑚) ≤ 𝑘(𝑥, 𝑦) ≤ 𝑐(𝑥2𝑙 +𝐴𝑦2𝑚),

where 𝐴 ≥ 0, and 𝑙 ≤ 𝑚 are two nonnegative integers.
(II) Non-planar Condition:

𝑢𝑦𝑦 ≥ 𝑐0 > 0 in Ω.

This means the hypersurface 𝑆 = {(𝑥, 𝑢(𝑥));𝑥 ∈ Ω} does not have planar points, or say that
one principal curvature of the solution 𝑢 is strictly positive (this is a geometry condition).

Well-known result:

Proposition 6.1. (P. Guan, Adv. Math., 132(1997)) Let 𝑢 be a 𝐶1,1 weak solution of
(5.1), then under the conditions (I) and (II), we have 𝑢 ∈ 𝐶∞(Ω).

Remark: There have been some works on degenerate nonlinear elliptic equations in
connection with Bony’s theory of paradifferential operators. Under some initial smoothness
assumptions on the solution with some subelliptic estimates, Xu (Comm. PDE, 11 (1986))
proved the solution is 𝐶∞ by paradifferential calculus.

Question: Is it the best possible for the regularity of solution for degenerate Monge-
Ampère equation to be 𝐶∞ smooth?

Theorem 6.2. (Main result) (Chen-Li-Xu, 2009). Let 𝑢 be a 𝐶1,1 weak solution of the
Monge-Ampère equation (5.1), then under the conditions (I) and (II), we have 𝑢 ∈ 𝐺𝑙+1(Ω),
provided 𝑘 ∈ 𝐺𝑙+1(ℝ2).

Remarks:

∙ If 𝑘(𝑥, 𝑦) ∈ 𝐺𝜎(ℝ2) with 𝜎 ≥ 𝑙 + 1, then we have 𝑢 ∈ 𝐺𝜎(Ω).
∙ The result can be extended to higher dimensional cases, and the case of generalized
Monge-Ampère equation

det𝐷2𝑢 = 𝑘(𝑥, 𝑢,𝐷𝑢), 𝑥 ∈ Ω.

∙ The Gevrey index 𝑙+1 seems the best possible, since, in case of 𝑙 = 0, the equation
(6.1) is elliptic and 𝑢 ∈ 𝐺1(Ω) = 𝒜(Ω), i.e., the solution has analytic regularity,
which coincides with the well-known regularity result for nonlinear elliptic equation.

∙ If 𝑘(𝑥, 𝑦) is independent of second variable 𝑦 (i.e. 𝐴 = 0), the equation (6.2) is
linear, then Derridj-Zuily (1972) proved that the optimal regularity result is that
the solution 𝑢 ∈ 𝐺𝑠, 𝑠 ≥ 1, provided 𝑘 ∈ 𝐺𝑠.

7. Idea of Proof.

By using the partial Legendre transformation, the equation (6.1) can be translated to
the following divergence form quasi-linear equation

(7.1) ∂𝑠𝑠𝑤(𝑠, 𝑡) + ∂𝑡 {𝑘(𝑠, 𝑤(𝑠, 𝑡))∂𝑡𝑤(𝑠, 𝑡)} = 0.

Thus we need to prove
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1) Gevery regularity for the equation (7.1);
2) Gevrey regularity will be kept to be invariant under the partial Legendre transfor-

mation.

Partial Legendre transformation (or called semi-spherical mapping):
𝑇 : (𝑥, 𝑦) −→ (𝑠, 𝑡) by setting

(7.2)

{
𝑠 = 𝑥,
𝑡 = 𝑢𝑦.

It is easy to verify that

𝐽𝑇 =

(
𝑠𝑥 𝑠𝑦
𝑡𝑥 𝑡𝑦

)
=

(
1 0
𝑢𝑥𝑦 𝑢𝑦𝑦

)
,

and

𝐽−1
𝑇 =

(
𝑥𝑠 𝑥𝑡
𝑦𝑠 𝑦𝑡

)
=

(
1 0

−𝑢𝑥𝑦

𝑢𝑦𝑦

1
𝑢𝑦𝑦

)
.

Thus if 𝑢 ∈ 𝐶1,1 and 𝑢𝑦𝑦 ≥ 𝑐0 > 0 in Ω, then the transformations

𝑇 : Ω −→ 𝑇 (Ω), 𝑇−1 : 𝑇 (Ω) −→ Ω

are 𝐶0,1-differmorphisms, and if 𝑢 ∈ 𝐶∞ then 𝑇 is 𝐶∞-differmorphisms.
Main result will be deduced by following propositions:

Proposition 7.1. If 𝑢(𝑥, 𝑦) is a smooth solution of the Monge-Ampère equation (6.1) and
𝑢𝑦𝑦 ≥ 𝑐0 > 0 in Ω, then 𝑦(𝑠, 𝑡) ∈ 𝐶∞ (𝑇 (Ω)) satisfying the equation

(7.3) ∂𝑠𝑠𝑦 + ∂𝑡

{
𝑘(𝑠, 𝑦(𝑠, 𝑡))∂𝑡𝑦

}
= 0.

Proposition 7.2. Suppose that 𝑤(𝑠, 𝑡) ∈ 𝐶∞(𝐵̄) is a solution to the quasi-linear equation
(7.1), and that 𝑘 ∈ 𝐺ℓ+1(ℝ2). Then 𝑤 ∈ 𝐺ℓ+1(𝐵) (where 𝐵 = {(𝑥, 𝑡)∣𝑠2 + 𝑡2 < 1}).
Proposition 7.3. If 𝑘 ∈ 𝐺ℓ+1(Ω) and 𝑦(𝑠, 𝑡) ∈ 𝐺ℓ+1 (𝑇 (Ω)) , then 𝑢(𝑥, 𝑦) ∈ 𝐺ℓ+1 (Ω) .

The result of Proposition 7.3 implies that the Gevrey regularity will be invariant under
the partial Legendre transformation.

Thus we have

∙ From Guan’s result ⇒ 𝑢 ∈ 𝐶∞(Ω).
∙ From Proposition 7.1 and Proposition 7.2 ⇒ 𝑤(𝑠, 𝑡) ∈ 𝐺𝑙+1(𝑇 (Ω)).
∙ From Proposition 7.3⇒ 𝑢 ∈ 𝐺𝑙+1(Ω) (Main Result).

Proof of Proposition 7.1 can be deduced directly by Lemma 19 of Guan’s paper (Adv.
Math. 1997). So it remains to prove Proposition 7.2 and Proposition 7.3 (we omitted
here).


