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In this note based on joint works with my graduate student LEE Hyung-Ju, we are
concerned with the asymptotic behaviour of solutions to the following systems of linear
differential equations with variable coefficients

dx

dt
= A(t)x(t),(1)

dy

dt
= A(t)y(t) + f(t) in [t0,∞),(2)

where A(t) is a square matrix of order n whose components are bounded continuous on
[t0,∞). While f(t), x(t) and y(t) are vector-valued functions of the classes C0, C1, C1 on
[t0,∞) respectively.

First of all, let us recall the case of constant coefficients, that is, A is independent of
t. Then we know the precise asymptotics for the solutions of (1) and (2) by the spectral
resolution of etA like

etA =
∑

λ∈σ(A)

eλt

h(λ)−1∑
j=0

tj

j!
(A− λE)jPλ,

where σ(A) is the spectrum of A, Pλ is the projection onto the generalized eigen-space
G(λ, h(λ)) = { x | (A − λE)h(λ)x = 0 } and h(λ) is the multiplicity of the eigenvalue λ
which is the natural number satisfying rank(A− λE)h(λ)+1 = rank(A− λE)h(λ). Also, for
initial data x(t0) = w define its degree dw(λ) by

dw(λ) =

{
0 if Pλw = 0,

k if (A− λE)k−1Pλw 6= 0, (A− λE)kPλw = 0.

Roughly speaking, we see that for any solution x(t) of (1) with initial data x(t0) = w

‖x(t)‖ = const. eαttβ + o
(
eαttβ

)

as t →∞, where α = max
λ∈σ(A)

Re λ, β = max
λ∈σ(A)

dw(λ). For (2) or the details, see Ishida-Lee

[3]. So, it is natural to introduce the Lyapunov exponent of a vector-valued function
u : [t0,∞) → Cn as

λ(u) = lim sup
t→∞

log ‖u(t)‖
t
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due to Perron [6]. For instance, λ
(
eattb

)
= a when a, b are constants.

Remark 1. There is also an exponent ρ such that ρ
(
eattb

)
= b, of course. See Ishida-Lee

[3].

Question 1 How about the case that A(t) converges to some const. A0 as t →∞?

Our alternative interest is the case of diagonal A(t) = diag(a11(t), · · · , ann(t)) because
then (1) is reduced to n scalar equations x′j(t) = ajj(t)xj(t) with Lyapunov exponents

(3) λ(xj) = lim sup
t→∞

1

t

∫ t

t0

Re ajj(s) ds.

Question 2 How about the case that lim
t→∞

ajk(t) = 0 (j 6= k)? Then does (3) also hold?

Let us give a few affirmative answers to these questions under additional conditions
below. The first milestone to Question 2 is achieved in Perron [6]. We impose that
Re a11(t) = Re a22(t) = · · · = Re ann(t) for large t through Theorem 3.

Theorem 1 (Satz 7 in Perron [6], p. 765). Assume that the two conditions

lim
t→∞

ajk(t) = 0 if j 6= k,(4)

lim inf
t→∞

(Re ajj(t)− Re aj+1,j+1(t)) > 0.(5)

Then there exist n linearly independent solutions x1(t), · · · , xn(t) of (1) satisfying

(6) λ(xj) = lim sup
t→∞

1

t

∫ t

t0

Re ajj(s) ds.

Question 3 Is the condition (5) essential? Namely, can we weaken it?

An answer to Question 3 is revealed by

Theorem 2 (Corollary 2 in Wang-Mai [7], p. 903). Let a](t) = max
j 6=k

|ajk(t)|. Assume that

the two conditions

lim
t→∞

1

t

∫ t

t0

a](s) ds = 0,(7)

Re ajj(t)− Re aj+1,j+1(t) = 2en a](t) for large t.(8)

Then there exist n linearly independent solutions x1(t), · · · , xn(t) of (1) satisfying (6).

Corollary 1. If both lim
t→∞

a](t) = 0 and (8) are fulfilled, then the same conclusion as in

Theorem 1 holds.

Example 1 (Example 2 in Wang-Mai [7], p. 903). Let n = 2, α > 0 and

A(t) =

[
1 + 12 t−α t−α

t−α 1

]
.

Then λ(x1) = 1 and λ(x2) = 1.
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Question 4 What about the nonhomogeneous system (2)?

Theorem 3 (Lee [4]). Let f ](t) = max
j=1,2,··· ,n

|fj(t)|. Assume that (7),

∫ ∞
f ](t) dt < ∞,(9)

Re ajj(t)− Re aj+1,j+1(t) = 2e
(
na](t) + f ](t)

)
,(10)

Re ajj(t) = a](t) + e f ](t)(11)

for large t. Then there exist n particular solutions y1(t), · · · , yn(t) of (2) satisfying

λ(yj) = lim sup
t→∞

1

t

∫ t

t0

Re ajj(s) ds.

Remark 2. (10) corresponds to (8). But Theorem 3 does not contain Theorem 2 since
the extra condition Re ajj(t) = a](t) is unnecessary in Theorem 2. We note that (11) is
technical. Further, Theorems 2, 3 are mere Corollaries of more general results in [7], [4].

What is the more general result in [4]? To state it, we need to prepare a few notions.

Definition 1. Let r > 0. We say that the nonhomogeneous system (2) is (n, r)-diagonal,
if there are some c > 0 and ε > 0 such that for every j = 1, 2, · · · , n

∫ t2

t1

[
Re ajj(t)− n

r
a](t)− 1 + ε

r

(
1 +

1

r

)j−1

f ](t)

]
dt = −c

holds for any t1, t2 with t0 5 t1 < t2 < ∞.

Definition 2. Let N > 0 and aj(t) = max
k=j+1,··· ,n

Re akk(t). We say that the nonhomogeneous

system (2) has (n,N, r)-diversity, if every j = 1, 2, · · · , n

∫ t2

t1

{Re ajj(t)− aj(t)

−
[(

N + n− 2 +
n

r

)
a](t) +

N + 1

r
f ](t)

](
1 +

1

r

)j−1
}

dt = log
r

N

is satisfied for any t1, t2 with t0 5 t1 < t2 < ∞.

“(n, r)-diagonality” is initially introduced in Lee [4], which ensures the non-vanishing
property of some solutions to the nonhomogeneous system (2). Meanwhile, “(n,N, r)-
diversity” is an evident extension of the similar one in [7] to the nonhomogeneous case.

Theorem 4 (Lee [4]). Assume that the nonhomogeneous system (2) is (n, r)-diagonal and
that (2) has (n,N, r)-diversity for some N , r with N = r = n + (1/2). Moreover, if

(12)

∫ ∞

t0

f ](t) dt < ∞,

then there exist n particular solutions y1(t), · · · , yn(t) of (2) whose Lyapunov exponents
λ1, · · · , λn fulfill the estimates

∣∣∣∣λj − lim sup
t→∞

1

t

∫ t

t0

Re ajj(s) ds

∣∣∣∣ 5 n− 1

r + (1/2)− n
lim sup

t→∞

1

t

∫ t

t0

a](s) ds.
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Theorem 4 implies Theorem 3. Indeed, choose ε = 1 and N = r = n + (1/2) in
Theorem 4 and use the elementary inequalities

(
1 +

1

r

)j−1

<

(
1 +

1

n

)n−1

< e := lim
n→∞

(
1 +

1

n

)n

.

Next we shall answer Question 1 for the nonhomogeneous system (2). That is, assume
that there exists a constant matrix A0 such that lim

t→∞
A(t) = A0. Let us denote σ(A0) by

σ(A0) = { λ1, λ2, · · · , λr }, Re λ1 > Re λ2 > · · · > Re λr,

h(λ1) in num.︷ ︸︸ ︷
λ1, · · · , λ1 ,

h(λ2) in num.︷ ︸︸ ︷
λ2, · · · , λ2 , · · · ,

h(λr) in num.︷ ︸︸ ︷
λr, · · · , λr =: µ1, µ2, · · · , µn.

Proposition 1. There is a fundamental matrix X(t) to the homogeneous system (1) such
that

X(t) = [x1(t), · · · , xn(t)], λ(xk) = Re µk.

Proposition 2. X−1(x)∗ is a fundamental matrix to the adjoint system
dz

dt
= −A∗(t)z.

Proposition 3 (Perron). Let X−1(t) =: [η1(t), · · · , ηn(t)] for X(t) in Proposition 1. Then
λ(ηk) = −Re µk.

These propositions can be found in [1] or [5]. Propositions 1, 3 are entirely non-trivial.
The followings are some of our partial solution to Question 1 in aid of them.

Proposition 4. λ(y) 5 max{Re λ1, λ(f)} for any solution y of (2).

We may actually construct solutions y1, · · · , yr of (2) such that λ(yk) = Re λk for
k = 1, · · · , r under the condition λ(f) < Re λr.

Proposition 5. If there exists some k ∈ {1, · · · , r} with λ(f) < Re λk, then there is a
solution y of (2) satisfying λ(y) < Re λk.

∵ If there is ` ∈ {1, · · · , n − 1} such that λ(x`) = Re λk and λ(x`+1) < Re λk, then we
put Φ+(t) = t[η1(t), · · · , η`(t), 0, · · · , 0] and Φ−(t) = t[0, · · · , 0, η`+1(t), · · · , ηn(t)], so that

y(t) =

∫ t

t0

X(t)Φ−(s)f(s) ds +

∫ t

∞
X(t)Φ+(s)f(s) ds

is the required one. Otherwise, take ` = n, i.e., Φ+(t) = X−1(t) and Φ−(t) ≡ 0. ¤
Corollary 2. If there exists some k ∈ {1, · · · , r} with λ(f) < Re λk, then there are
solutions y1, · · · , yk of (2) satisfying λ(yj) = Re λj for j ∈ {1, · · · , k}.
Corollary 3. If λ(f) < Re λr, then there are solutions y1, · · · , yr of (2) satisfying
λ(yk) = Re λk for k ∈ {1, · · · , r}.
Remark 3. We never assume some condition on the rate of A(t) to A0 and the simplicity of
σ(A0) bacause we do not employ any projection associated with A0 which is represented
by Dunford integral as usual in, e.g., §3, Chap. IV in Coppel [2].
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Remark 4. Recently, Lee in [5] has succeeded in removing the conditions (12), (11) thanks
to the “regularity” of the homogeneous system (1) in Lyapunov’s sense (See [1] or [5]).

Theorem 5 (Lee [5]). Assume that the two conditions of Wang-Mai [7]

lim
t→∞

1

t

∫ t

t0

a](s) ds = 0,(7)

Re ajj(t)− Re aj+1,j+1(t) = 2en a](t) for large t(8)

and that the limit

lim
t→∞

1

t

∫ t

t0

Re ajj(s) ds

exists for every j ∈ {1, · · · , n}. If

(13) λ(f) < lim
t→∞

1

t

∫ t

t0

Re ann(s) ds,

then there are n particular solutions y1(t), · · · , yn(t) of (2) fulfilling

λ(yj) = lim
t→∞

1

t

∫ t

t0

Re ajj(s) ds

for every j ∈ {1, · · · , n}.

Remark 5. The condition (13) can be applied to several cases that

∫ ∞
f ](t) dt = ∞.
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