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1 Introduction and Main Results

In this note we consider the non-local diffusion equations with a convective term

∂tθ + AK(t)θ + v · ∇θ = 0, t > 0, x ∈ Rd, (1.1)

where d ≥ 2 and AK(t) is a linear operator formally defined by(
AK(t)f

)
(x) = P.V.

∫
Rd

(f(x)− f(y))K(t, x, y) dy. (1.2)

Here K(t, x, y) is a positive function satisfying

K(t, x, y) = K(t, y, x), C−1
0 |x− y|−d−α ≤ K(t, x, y) ≤ C0|x− y|−d−α, (1.3)

for some constants α ∈ [1, 2) and C0 ≥ 1, and v(t, x) = (v1(t, x), · · · , vn(t, x)) is a vector
field satisfying the divergence free condition. The typical example of AK(t) is the fractional
Laplacian (−∆)α/2 with α ∈ [1, 2), which is defined by

(−∆)
α
2 f = Cd,α P.V.

∫
Rd

(f(x)− f(y))|x− y|−d−α dy, (1.4)

where Cd,α is a positive constant depending only on d and α.

The equations of the form (1.1) appear several models in the fluid dynamics, where the
quantities are convected by the incompressible flows. In the case d = 2 and AK(t) = (−∆)α/2,
if v and θ are related by v = (R2θ,−R1θ), where Ri = ∂xi

(−∆)−1/2, the equation (1.1) is called
the dissipative quasi geostrophic equation (QG). The QG equation is a model in the geophysical
fluid dynamics [3]. In particular, the case α = 1 is called critical and the regularity of solutions
to the QG equations is studied recently by [1, 5, 4]. If θ is a finite energy weak solution to
the QG equations, it is known that v = (R2θ,−R1θ) belongs to the class of bounded mean
oscillation, denoted by BMO(Rd), for all t > 0. This is derived from the maximum principle-
type estimates for θ and the boundedness of the Riesz transformation in BMO(Rd). Therefore,
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it is important to study (1.1) under the regularity condition v(t) ∈ (BMO(Rd))d for t > 0 if
one takes the applications to the QG equations into account. Indeed, in [1, 4] they proved the
global regularity of solutions to the critical QG equations by showing the continuity of solutions
to (1.1) with AK(t) = (−∆)1/2 and with a given v in the class of L∞(0,∞; (BMO(Rd))d).

Motivated by the results of [1, 4] we study the fundamental solutions to (1.1) with a given
v in the class of BMO. We establish pointwise upper bounds and continuity estimates of
fundamental solutions associated with (1.1). Our approach is different from [1, 4], and based
on the methods in [2, 6, 7] whose origin is seen in the classical results by [9] for the second-order
parabolic equations of divergence forms. In particular, our results give another proof for the
global regularity of the critical QG equations. The details of the arguments will be given in [8]
and omitted in this note.

To describe the main results precisely, let us recall the definition of the BMO space:

BMO(Rd) =
{
f ∈ L1

loc(Rd) | ∥f∥BMO = sup
B

1

|B|

∫
B

|f − AvgBf | dx < ∞
}
. (1.5)

Here the supremum is taken over all balls B = BR(x) (the ball with radius R > 0 centered
at x ∈ Rd), and |B| is the volume of the ball B. The value AvgBf is defined by

AvgBf =
1

|B|

∫
B

f(x) dx. (1.6)

In this note we impose the following two conditions on v:

t1−
1
αv(t) ∈ L∞(0,∞; (BMO(Rd))d), (1.7)

div v(t) = 0 for a.e. t > 0 in the sense of distributions. (1.8)

For simplicity of notations we will write

∥v∥Xα = sup
t>0

t1−
1
α∥v(t)∥BMO. (1.9)

The time weight in (1.7) reflects the scaling invariant property of (1.1). Indeed, if θ is
a solution to (1.1) then the rescaled function θλ(t, x) = θ(λt, λ1/αx) is also a solution to the
equation of the type (1.1) with v replaced by vλ(t, x) = λ1−1/αv(λt, λ1/αx). It is easy to see that
∥vλ∥Xα = ∥v∥Xα for all λ > 0, i.e., ∥ · ∥Xα is a scaling invariant norm. Such a scaling invariant
property is heuristically known as a key in the study of several quantities of solutions.

We first state the pointwise estimates of fundamental solutions of (1.1), denoted by PK,v(t, x; s, y).

Theorem 1.1 Assume that (1.3), (1.7), and (1.8) hold. Then there exists a fundamental
solution PK,v(t, x; s, y) to (1.1) such that

PK,v(t, x; s, y) ≤ C1(t− s)−
d
α , (1.10)

PK,v(t, x; s, y) ≤ C2

(
1 + F [v](t, s, x, y)

)d+α
(t− s)−

d
α

(
1 +

|x− y|
(t− s)

1
α

)−d−α
, (1.11)

for all t > s ≥ 0 and x, y ∈ Rd, where

F [v](t, s, x, y) = (t− s)−
1
α sup

s<r<t

∣∣ ∫ r

s

AvgB|x−y|(x)
v(τ) dτ

∣∣. (1.12)

Here C1 depends only on d, α, and C0, and C2 depends only on d, α, C0, and ∥v∥Xα.
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Note that the constants C1 and C2 in Theorem 1.1 do not depend on the time variables as
well as spatial variables, due to the scaling invariant assumptions on v. Est. (1.11) shows that

PK,v(t, x; s, y) is bounded by the modification of C(t− s)−
d
α (1 +

|x− y|
(t− s)

1
α

)−d−α, which implies

that PK,v(t, x; s, y) has the similar pointwise decay property as the fundamental solution to the
fractional heat equations

∂tθ + (−∆)
α
2 θ = 0, t > 0, x ∈ Rd. (1.13)

Indeed, the fundamental solutions to (1.13), denoted by P0(t, x; s, y), has the estimate

C(t− s)−
d
α (1 +

|x− y|
(t− s)

1
α

)−d−α ≤ P0(t, x; s, y) ≤ C ′(t− s)−
d
α (1 +

|x− y|
(t− s)

1
α

)−d−α, (1.14)

for some positive constants C and C ′.

The term F [v] in (1.12) can be estimated by assuming in addition that v(t) belongs to the
uniformly local L1 space: L1

uloc(Rd) = {f ∈ L1
loc(Rd) | ∥f∥L1

uloc
= supx∈Rd AvgB1(x)|f | < ∞}. In

addition to (1.7) and (1.8) let us assume that

t1−1/αv(t) ∈ L∞(0,∞; (L1
uloc(Rd))d). (1.15)

Then we get the following

Corollary 1.2 Assume that (1.3), (1.7), (1.8), and (1.15) hold. Then the fundamental solu-
tion PK,v(t, x; s, y) in Theorem 1.1 satisfies

(i) for (t− s)1/α ≤ |x− y| ≤ 1:

PK,v(t, x; s, y) ≤ C(t− s)−
d
α

(
1 + | log(t− s)|

)d+α(
1 +

|x− y|
(t− s)

1
α

)−d−α
, (1.16)

(ii) otherwise:

PK,v(t, x; s, y) ≤ C(t− s)−
d
α (1 +

|x− y|
(t− s)

1
α

)−d−α, (1.17)

Next we state the continuity results of fundamental solutions.

Theorem 1.3 Assume that (1.3), (1.7), and (1.8) hold. Then the fundamental solution PK,v(t, x; s, y)
in Theorem 1.1 satisfies

|PK,v(t1, x1; s1, y1)− PK,v(t2, x2; s2, y2)|

≤ C

(min{t1 − s1, t2 − s2})
d
α

(
|x1 − x2|+ |y1 − y2|+ (t1 − t2)

1
α + (s1 − s2)

1
α

(min{t1 − s1, t2 − s2})
1
α

)c

.

Here C and c depend only on d, α, C0, and ∥v∥Xα.

The proof of Theorem 1.3 is based on the arguments in [6, 7], where the convective term is
not taken into account. Our approach does work for the case α ∈ (0, 1), but a suitable Hölder
continuity is required for v. These are also discussed in [8].
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