Blow up Phenomena

on the curvature of closed plane elastic curves with the winding number $\omega \geq 1$

Minoru Murai (Ryukoku University)

Let Ω be a domain in \mathbf{R}^{2} with smooth boundary Γ. The length of Γ is equal to 2π and the winding number $\omega \geq 0$. Let s be the arc-length parameter of $\Gamma, \kappa(s)$ the curvature of Γ and M the area of Ω defined by

$$
M:=\frac{1}{2} \int_{\Gamma} x d y-y d x \quad(x, y) \in \Gamma .
$$

We consider the variational problem $(V P)$: For given $\omega \geq 0, L>0$ and M with $-\pi<M<\pi$ and $\omega M \neq \pi$, find the curvature $\kappa(s)$ such that the functional $\mathcal{E}(\kappa):=\frac{1}{2} \int_{0}^{2 \pi} \kappa(s)^{2} d s$ takes the minimum.

The minimizer satisfies the following Euler-Lagrange equation:

$$
(E)\left\{\begin{array}{l}
\kappa_{s s}+\frac{1}{2} \kappa^{3}+\mu \kappa-\nu=0, \quad s \in[0,2 \pi], \\
\kappa(0)=\kappa(2 \pi), \kappa_{s}(0)=\kappa_{s}(2 \pi), \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa(s) d s=\omega \\
\frac{4 \pi^{2} \mu+\pi \int_{0}^{2 \pi} \kappa(s)^{2} d s}{4 \pi \omega \mu+\int_{0}^{2 \pi} \kappa(s)^{3} d s}=M
\end{array}\right.
$$

where μ, ν are some constants.
Let us set the start point $s=0$ at the maximal point of $\kappa(s)$ and n be a natural number. Each $\kappa(s)$ has a primitive period L / n, which is symmetric in $[0,2 \pi / n]$ at $s=\pi / n$, strictly decreasing in $(0, \pi / n)$ and strictly increasing in $(\pi / n, 2 \pi / n)$. (We call this solution" n-mode solution".)

This problem is first considered by K. Watanabe [4-6] with the winding number $\omega=1$. M. Murai - W. Matsumoto - S. Yotsutani [1-3] investigated the global structure of the Euler equation and shapes of its solutions.

We give the shapes of one of 2-mode solutions with the winding number $\omega=1$ corresponding to amounts M in Figure 1. We give those of the other 2-mode solutions with $\omega=1$ in Figure 2, which are always non-simple.

Figure 1: Curves by 2-mode solutions with $\omega=1$

$\mathrm{M}=2.041$

$\mathrm{M}=1.351$

$\mathrm{M}=0.725$

$\mathrm{M}=0.709$
$\mathrm{M}=0.575$

$\mathrm{M}=0.860$

$$
\mathrm{M}=\pi / 5
$$

$$
\rightarrow \frac{-0.0}{\substack{-0.5 \\ 0.0 .5}}
$$

$$
\mathrm{M} \rightarrow \pi / 3
$$

Figure 2: Curves by 2-mode solutions with $\omega=1$
In this paper, we consider the the blow up phenomena of the curvature with the winding number $\omega \geq 1$. For example, in the case of the winding number $\omega=1$ and mode $n=2$, we obtain the following theorem.

Theorem. Let $\omega=1$ and $n=2$. Then, there exists three types of blow up phenomena:
(i) $\lim _{M \downarrow-\pi} \kappa(s ; M)= \begin{cases}\infty & s=0, \pi, \\ -1 & s \in(0, \pi) \cup(\pi, 2 \pi) \quad \text { (uniformly in the wider sense). }\end{cases}$

(ii) $\lim _{M \uparrow \pi} \kappa(s ; M)= \begin{cases}\infty & s=0, \pi, \\ 1 & s \in\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right), \\ -\infty & s=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \text { (uniformly in the wider sense). }\end{cases}$
(iii) $\lim _{M \uparrow \frac{\pi}{3}} \kappa(s ; M)= \begin{cases}3 & s \in\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right], \\ -\infty & s=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \text { (uniformly in the wider sense). }\end{cases}$

References

[1] W. Matsumoto, M. Murai, and S. Yotsutani, By which kind of sound can one hear the shape of a drum?, RIMS Koukyuroku 1315 (2003), 156-175.
[2] \qquad , What have we learned on the problem: Can one hear the shape of a drum?, Phase Space Analysis of Partial Differential Equations, vol. II, CENTRO DE RICERCA MATEMATICA ENNIO DE GIORGI, SCUOLA NORMALE SUPERIORE PISA (2005), 345-361.
[3] \qquad , One can hear the shapes of some Non-Convex drums, More Progress in Analysis Proceeding of the 5th International ISAAC Congress 2009. World Scientific Publishing. (2009), 863-872.
[4] K. Watanabe, Plane domains which are spectrally determined, Ann. Global Anal. Geom. 18 (2000), no. 5, 447-475.
[5] , Plane domains which are spectrally determined. II, J. Inequal. Appl. 7 (2002), no. 1, 25-47.
[6] \qquad , Variational Methods in the Inverse Eigenvalue Problem of Laplace Operator, Tokyo Institute University, 2004. doctor thesis.

