Note on lower bounds of energy growth for solutions to wave equations

Shin-ichi Doi, Tatsuo Nishitani and Hideo Ueda
Department of Mathematics, Osaka University

International Conference the 26th MATSUYAMA Camp, January 8, 2011

1 Abstract

In this lecture we discuss about lower bounds of energy growth for solutions to

$$
\begin{equation*}
\partial_{t}^{2} u-\sum_{i, j=1}^{n} \partial_{x_{i}}\left(a_{i j}(t, x) \partial_{x_{j}} u\right)=0 \tag{1}
\end{equation*}
$$

where $a_{i j}(t, x)=a_{j i}(t, x)$ are smooth with bounded derivatives of all orders such that

$$
\left\{\begin{array}{l}
a_{i j}(t, x)=\delta_{i j}, \quad|x| \geq R_{1}, \tag{2}\\
A^{-2}|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(t, x) \xi_{i} \xi_{j} \leq A^{2}|\xi|^{2},(t, x) \in \mathbb{R}^{1+n}
\end{array}\right.
$$

with some $R_{1}>0, A>0$, that is, (1) is a compact in space perturbation of the wave equation $\partial_{t}^{2} u-\Delta u=0$.

In what follows we put

$$
a(t, x, \xi)=\sum_{i, j=1}^{n} a_{i j}(t, x) \xi_{i} \xi_{j} .
$$

Denote by \mathcal{H} the Hilbert space which is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with respect to the norm

$$
\|u\|_{\mathcal{H}}^{2}=\int_{\mathbb{R}^{n}} \sum_{i=1}^{n}\left|\partial_{x_{i}} u\right|^{2} d x=\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x
$$

Let $\mathcal{R}(t, 0)$ be the solution operator defined by

$$
C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \times C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \ni\binom{u(0, \cdot)}{\partial_{t} u(0, \cdot)} \mapsto\binom{u(t, \cdot)}{\partial_{t} u(t, \cdot)} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \times C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

which extends uniquely to bounded operator in $\mathcal{H} \times L^{2}$. We first give a simple upper bound on the possible growth of $\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(\mathcal{H} \times L^{2}\right)}$;

Proposition 1 We have

$$
\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(\mathcal{H} \times L^{2}\right)} \leq C \exp \left(\frac{1}{2} \int_{0}^{t}\left[\sup _{x, \xi} \frac{\left|\partial_{t} a(\tau, x, \xi)\right|}{a(\tau, x, \xi)}\right] d \tau\right)
$$

with some $C>0$.
We now investigate lower bounds on $\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(\mathcal{H} \times L^{2}\right)}$. We assume that there is a bicharacteristic $(x(t), \xi(t))$ of $\sqrt{a(t, x, \xi)}$ or $-\sqrt{a(t, x, \xi)}$ with $\xi(t) \neq 0$;

$$
\begin{equation*}
\frac{d x}{d t}= \pm \frac{\partial}{\partial \xi} \sqrt{a(t, x, \xi)}, \quad \frac{d \xi}{d t}=\mp \frac{\partial}{\partial x} \sqrt{a(t, x, \xi)} \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
|x(t)| \leq C^{*}, \quad|\xi(t)| \geq c^{*} \tag{4}
\end{equation*}
$$

with some $C^{*}>0, c^{*}>0$ for $t \geq 0$. Then we have
Theorem 1 Assume that there is a bicharacteristic verifying (4). Then there is a positive constant C such that

$$
\begin{aligned}
\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(\mathcal{H} \times L^{2}\right)} & \geq C \exp \left(\frac{1}{4} \int_{0}^{t} \frac{\partial_{t} a}{a}(\tau, x(\tau), \xi(\tau)) d \tau\right) \\
& \geq C A^{-1} \sqrt{|\xi(t)| /|\xi(0)|} .
\end{aligned}
$$

Remark: We can easily check that if $|x(t)|$ remains in a bounded set for $t \geq 0$ then we have

$$
\int_{0}^{t} \frac{\partial_{t} a}{a}(\tau, x(\tau), \xi(\tau)) d \tau=\log \frac{a(t, x(t), \xi(t))}{a(0, x(0), \xi(0))}
$$

and hence

$$
\int_{0}^{t}\left(\partial_{t} a / a\right)(\tau, x(\tau), \xi(\tau)) d \tau \rightarrow \infty, \quad t \rightarrow \infty
$$

is equivalent to $\lim _{t \rightarrow \infty}|\xi(t)|=\infty$. In particular, if $\xi(t)$ is periodic in t then Theorem 1 gives no information about energy growth.

We construct examples inspired by Colombini and Rauch [1] to which one can apply Theorem 1 to get lower bounds on $\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(\mathcal{H} \times L^{2}\right)}$. Our construction works in all dimensions $n \geq 2$ though we present only the case $n=2$ for simplicity. Consider the wave equation

$$
\begin{equation*}
\partial_{t}^{2} u-\sum_{i=1}^{2} \partial_{x_{i}}\left(a(t, x) \partial_{x_{i}} u\right)=0 \tag{5}
\end{equation*}
$$

that is, $a_{12}=a_{21}=0$ and $a_{11}=a_{22}=a(t, x)$ which is smooth with bounded derivatives of all orders and

$$
\begin{equation*}
C^{-1} \leq a(t, x) \leq C, \quad(t, x) \in \mathbb{R}^{1+2}, \quad a(t, x)=1 \quad \text { when } \quad|x| \geq 2 \tag{6}
\end{equation*}
$$

with some $C>0$.

Theorem 2 For any smooth non-negative bounded function $\delta(t)$ on $[0, \infty)$ and for any $\epsilon>0$ there exists $a(t, x)$ satisfying (6) such that for the associate solution operator \mathcal{R} to (5) we have

$$
\begin{array}{r}
C_{1} \exp \left(\int_{0}^{t} \delta(\tau) d \tau\right) \leq\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(\mathcal{H} \times L^{2}\right)} \\
\leq C_{2} \exp \left((2+\epsilon) \int_{0}^{t} \delta(\tau) d \tau\right)
\end{array}
$$

with some $C_{i}>0$ independent of ϵ.
If we impose some conditions on $\delta(t)$ the upper bound of energy growth in Theorem 2 can be improved. Denote by H^{1} the usual Sobolev space $H^{1}\left(\mathbb{R}^{n}\right)$ then

Theorem 3 Let $\delta(t)$ be a smooth non-negative bounded function on $[0, \infty)$ such that $\delta^{\prime}(t) \leq 0, \delta^{\prime \prime}(t) \geq 0$. Then there exists $a(t, x)$ verifying (6) such that for the associate solution operator $\mathcal{R}(t, 0)$ to (5) we have

$$
\begin{array}{r}
C_{1} \exp \left(\int_{0}^{t} \delta(s) d s\right) \leq\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(H^{1} \times L^{2} ; \mathcal{H} \times L^{2}\right)} \\
\leq C_{2} \exp \left(\int_{0}^{t} \delta(s) d s\right)
\end{array}
$$

with some constants $C_{i}>0$.
Actually our $a(t, x)=a(t, r, \theta)\left(x=r e^{i \theta}\right)$ is given by

$$
\sqrt{a(t, r, \theta)}=\exp (\chi(r)(r-1-2 \delta(t) f(\theta-t-\pi / 2))
$$

where $\chi(r) \in C_{0}^{\infty}(\mathbb{R}), 0 \leq \chi(r) \leq 1$ which is zero near $r=0$ and identically equal to 1 on a small neighborhood of $r=1$. Here $f(t) \in C^{\infty}(\mathbb{R})$ is 2π periodic verifying

$$
f(0)=0, \quad f^{\prime}(0)=1
$$

Let us take $\delta(t)=(1-\kappa)(1+t)^{-\kappa}, 0 \leq \kappa<1$. Then Theorem 3 shows that there is an $a(t, x)$ satisfying (6) such that the solution operator $\mathcal{R}(t, 0)$ verifies

$$
C_{1} e^{(1+t)^{1-\kappa}} \leq\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(H^{1} \times L^{2} ; \mathcal{H} \times L^{2}\right)} \leq C_{2} e^{(1+t)^{1-\kappa}} .
$$

If we choose $\delta(t)=m(1+t)^{-1}, m>0$ then from Theorem 3 one can find an $a(t, x)$ with (6) such that the associate $\mathcal{R}(t, 0)$ satisfies

$$
C_{1}(1+t)^{m} \leq\|\mathcal{R}(t, 0)\|_{\operatorname{Hom}\left(H^{1} \times L^{2} ; \mathcal{H} \times L^{2}\right)} \leq C_{2}(1+t)^{m} .
$$

References

[1] F.Colombini and J.Rauch, Smooth localized parametric resonance for wave equations, J. reine angew. Math. 616 (2008), 1-14.

