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1 Background

Let n be an integer with n ≥ 2, x = (x1, · · · , xn) ∈ Ω and Ω be a bounded
domain in Rn. For A(x) = (Aj(x))1≤j≤n ∈ C2(Ω;Rn), q ∈ L∞(Ω;C), we
define the operator of second order

L
(
x,

∂

∂ x

)
=

n∑
j=1

(1
i

∂

∂ xj
+ Aj(x)

)2

+ q(x).

Assume 0 is not an eigenvalue of L
(
x, ∂

∂ x

)
: H2(Ω) ∩H1

0 (Ω) → L2(Ω).

Boundary value problem (BVP)

{
L
(
x, ∂

∂ x

)
u = 0 in Ω

u|∂ Ω = f on ∂ Ω

For f ∈ H
1
2 (∂ Ω), we have the unique solution u ∈ H1(∂ Ω).

Dirichlet and Neumann map (DN map)

ΛA,q : H
1
2 (∂ Ω) → H− 1

2 (∂ Ω), by

ΛA,q(f) =
( ∂

∂ ν
+ iA · ν

)
u|∂ Ω, for f ∈ H

1
2 (∂ Ω),

where ν be the unit outer normal vector.
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The inverse problem (Calderón problem)

Can we determine the potential terms dA and q from DN map ΛA,q? This
means the possibility of knowing the inside from the boudary measurement.
Calderón [2] gave the fundamental result and approach for this problem.
There are many results for this problem after Calderón’s work.

we have many problems as (i) uniqueness, (ii) stability estimate (ill-posed
problem), (iii) reconstruction method, (iv) experiment (numerical and so

on). We can consider related problems for L
(
x, ∂

∂ x

)
= −∆g, where g =

gjk(x)dx
jdxk is the Riemannian metric.

We can know the importance of DN map from the fact that Green formula
gives(

L
(
x,

∂

∂ x

)
u, v

)
L2(Ω)

−
(
u,L

(
x,

∂

∂ x

)
v
)
L2(Ω)

=
(
u|∂ Ω,

( ∂

∂ ν
+ iA · ν

)
v|∂ Ω

)
L2(∂ Ω)

−
(( ∂

∂ ν
+ iA · ν

)
u|∂ Ω, v|∂ Ω

)
L2(∂ Ω)

.

Bukhgeim-Uhlmann [1] showed that Partial data of DN map implies the
uniqueness of q ∈ L∞(Ω) (A(x) = 0).

Key idea

We construct the solutions u = u(x;h) to (∆ + q)u = 0 by

u(x;h) = e
1
h
Φ(x)

(
a0(x) + hr(x;h)

)
,

where h > 0 is a small parameter (semi-classical parameter). The phase
function Φ(x) is defined by

Φ(x) = Φ0(x) = (a+ ib) · x =
n∑
j=1

(aj + ibj)x
j

for a, b ∈ Rn with |a| = |b| = 1 and a · b = 0. This phase function is linear.
The linear phase function is important for these results.

In fact, the direct calculation gives

∆
(
e

1
h
(a+ib)·x

)
=

1

h2

{(
|a|2 − |b|2

)
+ 2ia · b

}
e

1
h
(a+ib)·x.



For the phase function of complex valued
Φ(x) = φ(x) + iψ(x)

e−
1
h
Φ(x)L

(
x,

∂

∂ x

)(
e

1
h
Φ(x)

(
a0(x) + hr(x;h)

))
=

{
− 1

h2

( n∑
j=1

∂ Φ

∂ xj

)
+

1

h
P1

(
x,

∂

∂ x

)
+ L

(
x,

∂

∂ x

)}(
a0(x) + hr(x;h)

)
.

In the case of the linear phase function, the operator P1

(
x, ∂

∂ x

)
becomes of

Cauchy-Riemann type (∂).

About the lower order term r(x;h)

The lower order term r(x;h) is obtaind from the weighted L2 estimate for∫
Ω

e
2
h
a·x|v|2dx

for a semi-classical parameter h > 0. This is the Carleman estimate with the
weight function φ0(x) = a · x. Carleman estimates (but delicate case) and
Riesz theorem imply the construction pf the lower order term r(x;h).

What is the role of this special solution?

We want to show that Λq1 = Λq2 implies q1 = q2.
If Λq1 = Λq2 , we have∫

Ω

(q1 − q2)uvdx+ (small as h→ 0) = 0.

Set u and v as exponentially growing and decaying:

u =e
1
h
(φ0(x)+iψ0(x))

(
a0(x) + hr0(x;h)

)
v =e

1
h
(−φ0(x)+iψ̃0(x))

(
ã0(x) + hr̃0(x;h)

)
.

h→ 0 implies ∫
Ω

(q1 − q2)e
i
h
(ψ0(x)+ψ̃0(x))dx = 0,

for a0(x) = ã0(x) = 1.

For the linear phase ψ0(x)+ ψ̃0(x) = (b+ b̃) ·x, we have the Fourier fransform
of q1 − q2. The assumption n ≥ 3 implies that b can be perturbed. So the
analytic wave front set is calculated and support theorem is proved. This is
the rough sketch of the proof of the final step.



2 Results on the constant metric case

Let Ω be a domain in Rn (n ≥ 2) with Ωc = Rn\Ω = ϕ x = (x1, · · · , xn) ∈ Ω
and x0 = (x10, · · · , xn0 ) ∈ Ωc. Let G = (gjk)1≤j,k≤n be a real constant matrix
with G = Gt. Assume detG ̸= 0. We have the inverse matrix G−1 =
(gjk)1≤j,k≤n We define the pseudo-metric by

g =
n∑

j,k=1

gjkdx
jdxk

and the pseudo-distance between x and x0 by

||x− x0||2G =
n∑

j,k=1

gjk(x
j − xj0)(x

k − xk0).

We define the operators of second order

P
(
x,

1

i

∂

∂ x

)
=

n∑
j,k=1

gjk(x)
(1
i

∂

∂ xj

)(1
i

∂

∂ xk

)
+ (lower order terms).

The principal symbol p2(x, ξ) for (x, ξ) ∈ T ∗Ω is defined by

p2(x, ξ) =
n∑

j,k=1

gjk(x)ξjξk. For (x, ζ) ∈ Ω × Cn, p2(x, ζ) =
n∑

j,k=1

gjk(x)ζjζk is

also defined. We shall construct a solution Φ(x) = φ(x)+iψ(x) (φ(x), ψ(x) ∈
C2(Ω̃,R)) of complex valued to the eikonal equation

0 =p2(x,∇Φ(x)) =
n∑

j,k=1

gjk
∂ Φ

∂ xj
∂ Φ

∂ xk

=
n∑

j,k=1

gjk
( ∂ φ
∂ xj

∂ φ

∂ xk
− ∂ ψ

∂ xj
∂ ψ

∂ xk

)
+ 2i

n∑
j,k=1

gjk
∂ φ

∂ xj
∂ ψ

∂ xk
.

First we set φ(x). Second we choose ψ(x).
For (x, ξ) ∈ T ∗Rn = Ω× Rn and the function φ(x),

we define the symbols a = a(x, ξ) and b = b(x, ξ) as

a(x, ξ) =
n∑

j,k=1

gjk
( ∂ φ
∂ xj

∂ φ

∂ xk
− ξjξk

)
, b(x, ξ) =

n∑
j,k=1

gjk
∂ φ

∂ xj
ξk.

Poisson bracket between a(x, ξ) and b(x, ξ) is defined by

{a, b}(x, ξ) =
n∑
j=1

( ∂ a
∂ ξj

∂ b

∂ xj
− ∂ a

∂ xj

∂ b

∂ ξj

)
.



So we shall want to find the function ψ(x) of the solution to the system of
nonlinear partial differential equations of first order

a(x,∇ψ) = b(x,∇ψ) = 0

for the function φ(x).
We introduce a condition of the real part of the phase function φ(x).

Definition [Limiting Carleman weight (LCW)]

The function φ(x) ∈ C2(Ω̃;R) is called a limiting Carleman weight on Ω̃
(⊂ Ω) if and only if

{a, b}(x, ξ) = 0 on J,

where J = {(x, ξ) ∈ T ∗Ω̃| a(x, ξ) = b(x, ξ) = 0}
If the set J is a manifold, this manifold J is involutive. This is the

sufficient condition for the solvability of the system of the nonlinear equations
of first order.

When gjk = δkj (flat Laplacian case), Poisson bracket is obtained as

{a, b}(x, ξ) =
n∑

j,k=1

∂2 φ

∂ xj ∂ xk

( ∂ φ
∂ xj

∂ φ

∂ xk
− ξjξk

)
.

For the linear phase function φ(x) = a · x =
n∑
k=1

akx
k, we have {a, b}(x, ξ) =

0 for (x, ξ) ∈ T ∗Ω.

Kenig-Sjostrand-Uhlmann [4]

They introduce the new phase function

φ(x) = log |x− x0|,

ψ(x) =dist(
x− x0
|x− x0|

, ω0), ω0 ∈ Sn−1

They introduce the new weight function φ(x) = log |x− x0| of log type.
Thanks to the function φ(x) = log |x− x0|, the result in Calderón problem
was improved.



Question

Why (How) can they find the new function φ(x) = log |x− x0|? We give a
answer for this question.

Proposition

Let f(t) ∈ C2(R\0;R). Set the function φ(x) by

φ(x) =f(t)|t=|x−x0|2G (radial type function)

Then (A) and (B) are equivalent:
(A) φ(x) is a limiting Carleman weight.
(B) f(t) = C1 log |t|+ C2.
This means that the log type is the only choice of the limiting Carleman
weight of radial type. In fact, this result is true not only for elliptic case but
also for hyperbolic case as the wave equation.
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