
Singularities of solutions to the Cauchy problem for

second-order hyperbolic operators with the coefficients of
their principal parts depending only on the time variable

S. Wakabayashi ( Univ. of Tsukuba)

1. Introduction

Let x = (x0, x
′′) = (x0, x1, · · · , xn) ∈ Rn+1, and denote by ξ = (ξ0, ξ

′′) =

(ξ0, ξ1, · · · , ξn) ∈ Rn+1 their dual variables. The x0 variable plays the role of the

time variable. We consider second-order hyperbolic operators with symbols

P (x, ξ) = p(x0, ξ) +
n∑

j=0

bj(x)ξj + c(x),

where

p(x0, ξ) = ξ2
0 +

∑
|α|=2,α0≤1

aα(x0)ξ
α.

We assume that

(A) the aα(x0) are real analytic on [0,∞) and bj(x), c(x) ∈ C∞(Rn+1
+ ) ( 0 ≤ j ≤ n).

Here Rn+1
+ = {x ∈ Rn+1; x0 > 0}. We consider the following Cauchy problem:

(CP)

{
P (x,D)u(x) = f(x) in (0,∞) × Rn,

Dj
0u(x)|x0=0 = uj in Rn ( j = 0, 1),

where f ∈ C([0,∞);D′(Rn)) and uj ∈ D′(Rn) ( j = 0, 1). We may assume by

coordinate transformation

aα(x0) ≡ 0 if |α| = 2 and α0 = 1.

So P (x, ξ) can be written as follows:

P (x, ξ) = ξ2
0 − a(x0, ξ

′′) + b0(x)ξ0 + b(x, ξ′′) + c(x),

a(x0, ξ
′′) =

n∑
j,k=1

aj,k(x0)ξjξk, b(x, ξ′′) =
n∑

j=1

bj(x)ξj, aj,k(x0) = ak,j(x0).

We assume the following conditions:

(H) a(x0, ξ
′′) ≥ 0 for (x0, ξ

′′) ∈ [0,∞) × Rn.
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(F) b(x, ξ′′) ≡ 0 in x for any ξ′′ ∈ V , where V = {ξ′′ ∈ Rn; a(x0, ξ
′′) ≡ 0 in x0}.

If (CP) is C∞ well-posed, then it follows from the Lax-Mizohata theorem and results

in [IP] that (H) and (F) must be satisfied. By (H) V is a vector subspace of Rn. So

we may assume, with 1 ≤ n′ ≤ n, that V = {ξ′′ ∈ Rn; ξ1 = · · · = ξn′ = 0}, since the

case V = Rn is trivial. Then by (F) we have

a(x0, ξ
′′) ≡ a(x0, ξ

′) ̸≡ 0 in x0 for ξ′ ̸= 0, b(x, ξ′′) ≡ b(x, ξ′),

where ξ′ = (ξ1, · · · , ξn′). From (A) we have the following:

(i) For T > 0 there is kT ∈ N such that
∑kT

j=0 |∂j
x0

a(x0, ξ
′)| ̸= 0 for (x0, ξ

′) ∈
[0, T ] × Sn′−1, where Sn′−1 denotes the (n′ − 1) dimensional unit sphere.

(ii) There are r ∈ N, real analytic functions λj(x0) and vj,k(x0) ( 1 ≤ j ≤ r, 1 ≤
k ≤ n′) defined on [0,∞) such that λj(x0) ̸≡ 0, a(x0, ξ

′) =
∑r

j=1 λj(x0)ζj(x0, ξ
′)2,

where ζj(x0, ξ
′) =

∑n′

k=1 vj,k(x0)ξk.

Let Ω be a neighborhood of [0,∞) in C such that the aj,k(x0) can be extended

analytically to Ω, and define R(ξ′) = {(Re λ)+; λ ∈ Ω and a(λ, ξ′) = 0} for ξ′ ∈
Rn′ \ {0}, where a+ = max{a, 0}. We assume

(L) For any T > 0 and x′′ ∈ Rn, there is C > 0 such that

min
t∈R(ξ′)

|x0 − t| |b(x, ξ′)| ≤ C
√

a(x0, ξ′) for (x0, ξ
′) ∈ [0, T ] × (Rn′ \ {0}),

where mint∈R(ξ′) |x0 − t| = 1 if R(ξ′) = ∅.

(L) is a so-called Levi condition. Put

Γ(p(x0, ·), ϑ) = {ξ ∈ Rn+1; ξ0 >
√

a(x0, ξ′)},
Γ∗ = {y ∈ Rn+1; y · ξ ≥ 0 for any ξ ∈ Γ},

where ϑ = (1, 0, · · · , 0) ∈ Rn+1. We define for x0 ∈ Rn+1
+

K±
x0 = {x(t); ±t ≥ 0, {x(t)} is a Lipschitz continuous curve in Rn+1

+

and (d/dt)x(t) ∈ Γ(p(x0(t), ·), ϑ)∗ a.e. t}
( ⊂ {x; xj = x0

j ( n′ + 1 ≤ j ≤ n)}).

Concerning C∞ well-posedness we have the following

Theorem 1. (CP) has a unique solution u ∈ C2([0,∞);D′(Rn)). Let x0 ∈ Rn+1
+ .

If u satisfies (CP) and

(supp f ∪ {0} × (supp u0 ∪ supp u1)) ∩ K−
x0 = ∅,
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then x0 /∈ supp u. Moreover, (CP) is C∞ well-posed.

Remark. We assume that (H), (F) and (A) are satisfied. Moreover, we assume

that the aj,k(x0) are polynomials of x0, for example, when n′ ≥ 3. Then (CP) is C∞

well-posed if and only if (L) is satisfied.

For the proof of Theorem 1 we refer to [W].

2. Main results

Definition 1. Let z0 ≡ (x0, ξ0) ∈ Rn+1
+ × (Rn+1 \ {0})).

(i) The localization polynomial pz0(X) at z0 is defined by

p(z0 + sX) = sr(z0)(pz0(X) + o(1)) as s → 0, pz0(X) ̸≡ 0 in X ∈ R2n+2

(ii) The generalized Hamilton flows K±
z0 are defined by

K±
z0 ≡{z(t); ±t ≥ 0, {z(t)} is a Lipschitz continuous curve in T ∗Rn+1

+ \ 0

and (d/dt)z(t) ∈ Γ(pz0 , ϑ̃)σ a.e. t}.

Here ϑ̃ ≡ (0, ϑ) ∈ R2n+2, Γσ = {X ∈ R2n+2; σ(Y,X) ≥ 0 for any Y ∈ Γ} for

Γ ⊂ R2n+2 and σ denotes the symplectic form on T ∗Rn+1.

Remark. pz0(X) is hyperbolic w.r.t. ϑ̃.

Let z0 ≡ (x0, ξ0) ∈ Rn+1
+ ×(Rn+1\{0})). If ξ0′ = 0, then K±

z0 = (K±
x0∩Rn+1

+ )×{ξ0}.
If p(x0

0, ξ
0′) ̸= 0, then K±

z0 = {z0}. Moreover, K±
z0 are the broken null bicharacter-

istics of p in T ∗Rn+1
+ \ 0 emanating from z0 in the direction where ±x0 increase, if

ξ0′ ̸= 0 and p(x0
0, ξ

0′) = 0. Assume that ξ0′ ̸= 0 and p(x0
0, ξ

0′) = 0.

x0

z0

K+
z0

z0

x0 = 0

K−
z0

K±
z0 branch at every double characteristic point. Each segment is a null bicharac-

teristics. Each null bicharacteristics satisfies the following:(d/dx0)x
′′(x0) = (∓∇ξ′

√
a(x0, ξ′)|ξ′=ξ0′ , 0, · · · , 0)

ξ0(x0) = ±
√

a(x0, ξ0′), ξ′′(x0) = ξ0′′
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By continuity K±
z0 can be defined as sets in Rn+1

+ × (Rn+1 \ {0}) for z0 ∈ Rn+1
+ ×

(Rn+1 \ {0}).
Definition 2. Let δ > 0 and f ∈ C([0, δ];D′(Rn)). WF0(f) ⊂ T ∗Rn \ 0

can be defined as follows: We say that z0′′ ≡ (x0′′, ξ0′′) /∈ WF0(f) if there are

χ(x′′, ξ′′) ∈ S0
1,0(R

n), which is elliptic at z0′′, and δ′ > 0 such that χ(x′′, D′′)f ∈
C([0, δ′]; H∞(Rn)).

Remrk. (i) The above definition is a variant of Chazarain’s definition. (ii)

z0′′ ≡ (x0′′, ξ0′′) /∈ WF0(f) if and only if there are a neighborhood U ′′ of x0′′, a conic

neighborhood Γ′′ of ξ0′′ and δ′ > 0 such that for any φ ∈ C∞
0 (U ′′) there are CN > 0

( N ∈ N) satisfying

|Fx′′ [φ(x′′)f(x)](ξ′′)| ≤ CN⟨ξ′′⟩−N

for N ∈ N, x0 ∈ [0, δ′] and ξ′′ ∈ Γ′′, where Fx′′ denotes the partial Fourier transfor-

mation with respect to x′′.

Now we can state our main results.

Theorem 2. (I) Let u ∈ D′(Rn+1
+ ) satisfy, with δ > 0, u ∈ C2([0, δ];D′(Rn)),

and let z0 ≡ (x0, ξ0) ∈ WF (u), where x0
0 > 0.

(i) When 0 < t < x0
0, WF (u)∩K−

z0∩{x0 = t} ̸= ∅ if WF (Pu)∩K−
z0∩{x0 ≥ t} = ∅.

(ii) When t > x0
0, WF (u) ∩ K+

z0 ∩ {x0 = t} ̸= ∅ if WF (Pu) ∩ K+
z0 ∩ {x0 ≤ t} = ∅.

(iii) If WF (Pu) ∩ K−
z0 ∩ {x0 > 0} = ∅, then

(
1∪

j=0

WF ((Dj
0u)(0, x′′)) ∪ WF0(Pu))

∩ {(x′′, ξ′′); (0, x′′, ξ0, ξ
′′) ∈ K−

z0 for some ξ0 ∈ R} ≠ ∅

(II) (i)
∪2

k=0 WF0(D
k
0u) = (

∪1
j=0 WF ((Dj

0u)(0, x′′)) ∪ WF0(Pu)).

(ii) Assume that the aj,k(x0) can be extended to R so that aj,k(x0) ∈ C2(R)

and a(x0, ξ
′) ≥ 0 and that Pu ∈ C∞(Rn+1

+ ), for simplicity. If t > 0 and

(x0′′, ξ0′′) ∈
∪1

j=0 WF ((Dj
0u)(0, x′′)), then

WF (u) ∩ {(x, ξ); x0 = t and (x, ξ) ∈ K+
(0,x0′′,ξ0) for some ξ0

0 ∈ R} ̸= ∅.

Let us illustrate Theorem 2 with some figures. Assume that Pu ∈ C∞(Rn+1
+ ),
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K+
z0 ∪ K−

z0

for simplicity, and that z0 ∈ WF (u). In

the right figure the intersection K+
z0 ∩

{x0 = t1} consists of 4 points. Then

Theorem 2 insists that at least one

point of these 4 points in the intersec-

tion must belong to WF (u). Similarly,

at least one point of 2 points of the in-

tersection K−
z0 ∩ {x0 = t2} must belong

to WF (u) by Theorem 2. Moreover, at

least one point of 4 points of {(x′′, ξ′′);

(0, x′′, ξ0, ξ
′′) ∈ K−

z0 for some ξ0 ∈ R}

x0

x0 = t1

x0 = t2

x0 = 0

z0 ∈ WF (u)

must belong to
∪1

j=0 WF ((Dj
0u)(0, x′′). Now we assume that z0′′ ∈

∪1
j=0 WF ((Dj

0u)(0, x′′))

and, for simplicity, Pu ∈ C∞(Rn+1
+ ).

In the right figure the broken curves are

equal to
∪

± K+

(0,x0′′,±
√

a(0,ξ0′),ξ0′′)
. The

intersection of the broken curves and

{x0 = t} consists of 4 points in this

figure. Theorem 2 insists that at least

one of these 4 points must belong to

WF (u).

x0

x0 = 0

z0′′ ∈ ∪1
j=0WF ((Dj

0u)(0, x′′))

x0 = t

3. Examples

Example 1. Let n = n′ = 2, a(x0, ξ
′′) = (−ξ1 sin x0 + ξ2 cos x0)

2. Then∪
ξ ̸=0 K+

(0,ξ) ∩ {x0 = t} is the following:
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If E(x) satisfies {
P (x,D)E(x) = 0 in R3

+,

E(0, x′′) = 0, (D0E)(0, x′′) = iδ(x′′) in R2,

then sing supp E ⊂
∪

ξ ̸=0 K+
(0,ξ). We could not prove the equality.

Example 2. Let n = n′ = 2, a(x0, ξ
′′) = ((x2

0−2x0)ξ1+ξ2)
2 and P (x, ξ) = p(x0, ξ).

Then sing supp E =
∪

ξ ̸=0 K+
(0,ξ) and

∪
ξ ̸=0 K+

(0,ξ) ∩ {x0 = t} is as follows:
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Here, in order to prove the equality we have used the fact that E(x0,−x′′) = E(x)

and results on branching of singularities for operators with non involutive charac-

teristics given by Hanges and Ivrii.

4. Outline of Proof of Theorem 2

In order to prove Theorem 2 (I) (i) or (ii) we use results given in [KW]. To prove

Theorem 2 (I) (iii) and (II) we apply the same arguments as used in [KW]. Let

z0 ∈ T ∗Rn+1
+ satisfy |ξ0| = 1, and choose ϑ0 ∈ Γ(pz0 , ϑ̃) so that σ(r(z0), ϑ0) = 0,

where r(x, ξ) =
∑n

j=0 ξj
∂

∂ξj

. Put

φ(z; κ) = φ̃(z; κ)(1 + φ̃(z; κ)2)−1/2,

φ̃(x, ξ; κ) = σ(ϑ0, (x − x0, ξ/|ξ| − ξ0)) + κ(|x − x0|2 + |ξ/|ξ| − ξ0|2),
Λ(x, ξ) = BΨ(ξ/h)(φ(x, ξ; κ) − ν) log⟨ξ⟩h + l log(1 + δ⟨ξ⟩h),
PΛ(x,D) = (e−Λ)(x,D)P (x,D)(eΛ)(x,D),

where h ≥ 1, κ,B, l, ν > 0, δ ∈ [0, 1], ⟨ξ⟩h = (h2 + |ξ|2)1/2 and Ψ(ξ) ∈ S0
1,0

satisfies Ψ(ξ) = 1 for |ξ| ≥ 1 and Ψ(ξ) = 0 if |ξ| ≤ 1/2. We note that −Hφ(z0) ≡
(−(∇ξφ)(z0), (∇xφ)(z0)) = ϑ0. In order to prove Theorem 2 (i) it suffices to show

the following microlocal Carleman type estimates, choosing c0, c1, h so that 0 <

c0 < x0
0 < c1 and h ≫ 1: For any κ > 0 there are ν0 > 0, χk(x, ξ) ∈ S0

1,0 ( k = 1, 2)

and lk ∈ R ( k = 1, 2, 3) such that the χk(z) are positively homogeneous of degree

0 for |ξ| ≥ 1, χk(z) = 1 near z0, and “for any ν ∈ (0, ν0] there is B0 > 0 such that

「for any B ≥ B0 there is l0 > 0 such that for any l ≥ l0 there are δ0 ∈ (0, 1] and

C > 0 satisfying

∥χ1(x,D/h)v∥l1 ≤ C{∥PΛ(x,D)v∥l2 + ∥v∥l1−1 + ∥(1 − χ2(x,D/h))v∥l3}

if v ∈ C∞
0 ((c0, c1) × Rn) and 0 < δ ≤ δ0.」” Here ∥ · ∥l denotes the Sobolev norm

of order l. So an essential part is to show the above estimates. We omit it as it is
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long. The proof of Theorem 2 will be given in a forthcoming paper.
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