Singularities of solutions to the Cauchy problem for second-order hyperbolic operators with the coefficients of their principal parts depending only on the time variable

S. Wakabayashi (Univ. of Tsukuba)

1. Introduction

Let $x=\left(x_{0}, x^{\prime \prime}\right)=\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in \mathbf{R}^{n+1}$, and denote by $\xi=\left(\xi_{0}, \xi^{\prime \prime}\right)=$ $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right) \in \mathbf{R}^{n+1}$ their dual variables. The x_{0} variable plays the role of the time variable. We consider second-order hyperbolic operators with symbols

$$
P(x, \xi)=p\left(x_{0}, \xi\right)+\sum_{j=0}^{n} b_{j}(x) \xi_{j}+c(x)
$$

where

$$
p\left(x_{0}, \xi\right)=\xi_{0}^{2}+\sum_{|\alpha|=2, \alpha_{0} \leq 1} a_{\alpha}\left(x_{0}\right) \xi^{\alpha}
$$

We assume that
(A) the $a_{\alpha}\left(x_{0}\right)$ are real analytic on $[0, \infty)$ and $b_{j}(x), c(x) \in C^{\infty}\left(\overline{\mathbf{R}_{+}^{n+1}}\right)(0 \leq j \leq n)$.

Here $\mathbf{R}_{+}^{n+1}=\left\{x \in \mathbf{R}^{n+1} ; x_{0}>0\right\}$. We consider the following Cauchy problem:

$$
\begin{cases}P(x, D) u(x)=f(x) & \text { in }(0, \infty) \times \mathbf{R}^{n} \tag{CP}\\ \left.D_{0}^{j} u(x)\right|_{x_{0}=0}=u_{j} & \text { in } \mathbf{R}^{n} \quad(j=0,1)\end{cases}
$$

where $f \in C\left([0, \infty) ; \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)\right)$ and $u_{j} \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)(j=0,1)$. We may assume by coordinate transformation

$$
a_{\alpha}\left(x_{0}\right) \equiv 0 \quad \text { if }|\alpha|=2 \text { and } \alpha_{0}=1 .
$$

So $P(x, \xi)$ can be written as follows:

$$
\begin{aligned}
& P(x, \xi)=\xi_{0}^{2}-a\left(x_{0}, \xi^{\prime \prime}\right)+b_{0}(x) \xi_{0}+b\left(x, \xi^{\prime \prime}\right)+c(x), \\
& a\left(x_{0}, \xi^{\prime \prime}\right)=\sum_{j, k=1}^{n} a_{j, k}\left(x_{0}\right) \xi_{j} \xi_{k}, \quad b\left(x, \xi^{\prime \prime}\right)=\sum_{j=1}^{n} b_{j}(x) \xi_{j}, \quad a_{j, k}\left(x_{0}\right)=a_{k, j}\left(x_{0}\right) .
\end{aligned}
$$

We assume the following conditions:
(H) $a\left(x_{0}, \xi^{\prime \prime}\right) \geq 0$ for $\left(x_{0}, \xi^{\prime \prime}\right) \in[0, \infty) \times \mathbf{R}^{n}$.
(F) $b\left(x, \xi^{\prime \prime}\right) \equiv 0$ in x for any $\xi^{\prime \prime} \in V$, where $V=\left\{\xi^{\prime \prime} \in \mathbf{R}^{n} ; a\left(x_{0}, \xi^{\prime \prime}\right) \equiv 0\right.$ in $\left.x_{0}\right\}$.

If (CP) is C^{∞} well-posed, then it follows from the Lax-Mizohata theorem and results in [IP] that (H) and (F) must be satisfied. By (H) V is a vector subspace of \mathbf{R}^{n}. So we may assume, with $1 \leq n^{\prime} \leq n$, that $V=\left\{\xi^{\prime \prime} \in \mathbf{R}^{n} ; \xi_{1}=\cdots=\xi_{n^{\prime}}=0\right\}$, since the case $V=\mathbf{R}^{n}$ is trivial. Then by (F) we have

$$
a\left(x_{0}, \xi^{\prime \prime}\right) \equiv a\left(x_{0}, \xi^{\prime}\right) \not \equiv 0 \quad \text { in } x_{0} \text { for } \xi^{\prime} \neq 0, \quad b\left(x, \xi^{\prime \prime}\right) \equiv b\left(x, \xi^{\prime}\right)
$$

where $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{n^{\prime}}\right)$. From (A) we have the following:
(i) For $T>0$ there is $k_{T} \in \mathbf{N}$ such that $\sum_{j=0}^{k_{T}}\left|\partial_{x_{0}}^{j} a\left(x_{0}, \xi^{\prime}\right)\right| \neq 0$ for $\left(x_{0}, \xi^{\prime}\right) \in$ $[0, T] \times S^{n^{\prime}-1}$, where $S^{n^{\prime}-1}$ denotes the $\left(n^{\prime}-1\right)$ dimensional unit sphere.
(ii) There are $r \in \mathbf{N}$, real analytic functions $\lambda_{j}\left(x_{0}\right)$ and $v_{j, k}\left(x_{0}\right)(1 \leq j \leq r, 1 \leq$ $\left.k \leq n^{\prime}\right)$ defined on $[0, \infty)$ such that $\lambda_{j}\left(x_{0}\right) \not \equiv 0, a\left(x_{0}, \xi^{\prime}\right)=\sum_{j=1}^{r} \lambda_{j}\left(x_{0}\right) \zeta_{j}\left(x_{0}, \xi^{\prime}\right)^{2}$, where $\zeta_{j}\left(x_{0}, \xi^{\prime}\right)=\sum_{k=1}^{n^{\prime}} v_{j, k}\left(x_{0}\right) \xi_{k}$.

Let Ω be a neighborhood of $[0, \infty)$ in \mathbf{C} such that the $a_{j, k}\left(x_{0}\right)$ can be extended analytically to Ω, and define $\mathcal{R}\left(\xi^{\prime}\right)=\left\{(\operatorname{Re} \lambda)_{+} ; \lambda \in \Omega\right.$ and $\left.a\left(\lambda, \xi^{\prime}\right)=0\right\}$ for $\xi^{\prime} \in$ $\mathbf{R}^{n^{\prime}} \backslash\{0\}$, where $a_{+}=\max \{a, 0\}$. We assume
(L) For any $T>0$ and $x^{\prime \prime} \in \mathbf{R}^{n}$, there is $C>0$ such that

$$
\min _{t \in \mathcal{R}\left(\xi^{\prime}\right)}\left|x_{0}-t\right|\left|b\left(x, \xi^{\prime}\right)\right| \leq C \sqrt{a\left(x_{0}, \xi^{\prime}\right)} \quad \text { for }\left(x_{0}, \xi^{\prime}\right) \in[0, T] \times\left(\mathbb{R}^{n^{\prime}} \backslash\{0\}\right)
$$

where $\min _{t \in \mathcal{R}\left(\xi^{\prime}\right)}\left|x_{0}-t\right|=1$ if $\mathcal{R}\left(\xi^{\prime}\right)=\emptyset$.
(L) is a so-called Levi condition. Put

$$
\begin{aligned}
& \Gamma\left(p\left(x_{0}, \cdot\right), \vartheta\right)=\left\{\xi \in \mathbf{R}^{n+1} ; \xi_{0}>\sqrt{a\left(x_{0}, \xi^{\prime}\right)}\right\}, \\
& \Gamma^{*}=\left\{y \in \mathbf{R}^{n+1} ; y \cdot \xi \geq 0 \text { for any } \xi \in \Gamma\right\},
\end{aligned}
$$

where $\vartheta=(1,0, \cdots, 0) \in \mathbf{R}^{n+1}$. We define for $x^{0} \in \overline{\mathbf{R}_{+}^{n+1}}$

$$
\begin{aligned}
K_{x^{0}}^{ \pm}=\{x(t) ; & \pm t \geq 0, \quad\{x(t)\} \text { is a Lipschitz continuous curve in } \overline{\mathbf{R}_{+}^{n+1}} \\
& \text { and } \left.(d / d t) x(t) \in \Gamma\left(p\left(x_{0}(t), \cdot\right), \vartheta\right)^{*} \text { a.e. } t\right\} \\
\left(\subset \left\{x ; x_{j}=\right.\right. & \left.\left.x_{j}^{0}\left(n^{\prime}+1 \leq j \leq n\right)\right\}\right) .
\end{aligned}
$$

Concerning C^{∞} well-posedness we have the following
Theorem 1. (CP) has a unique solution $u \in C^{2}\left([0, \infty) ; \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)\right)$. Let $x^{0} \in \overline{\mathbf{R}_{+}^{n+1}}$. If u satisfies (CP) and

$$
\left(\operatorname{supp} f \cup\{0\} \times\left(\operatorname{supp} u_{0} \cup \operatorname{supp} u_{1}\right)\right) \cap K_{x^{0}}^{-}=\emptyset,
$$

then $x^{0} \notin \operatorname{supp} u$. Moreover, (CP) is C^{∞} well-posed.
Remark. We assume that (H), (F) and (A) are satisfied. Moreover, we assume that the $a_{j, k}\left(x_{0}\right)$ are polynomials of x_{0}, for example, when $n^{\prime} \geq 3$. Then (CP) is C^{∞} well-posed if and only if (L) is satisfied.

For the proof of Theorem 1 we refer to $[\mathrm{W}]$.

2. Main results

Definition 1. Let $\left.z^{0} \equiv\left(x^{0}, \xi^{0}\right) \in \mathbf{R}_{+}^{n+1} \times\left(\mathbf{R}^{n+1} \backslash\{0\}\right)\right)$.
(i) The localization polynomial $p_{z^{0}}(X)$ at z^{0} is defined by

$$
p\left(z^{0}+s X\right)=s^{r\left(z^{0}\right)}\left(p_{z^{0}}(X)+o(1)\right) \text { as } s \rightarrow 0, \quad p_{z^{0}}(X) \not \equiv 0 \text { in } X \in \mathbf{R}^{2 n+2}
$$

(ii) The generalized Hamilton flows $K_{z^{0}}^{ \pm}$are defined by

$$
\begin{aligned}
K_{z^{0}}^{ \pm} \equiv\{z(t) ; & \pm t \geq 0, \quad\{z(t)\} \text { is a Lipschitz continuous curve in } T^{*} \mathbf{R}_{+}^{n+1} \backslash 0 \\
& \text { and } \left.(d / d t) z(t) \in \Gamma\left(p_{z^{0}}, \widetilde{\vartheta}\right)^{\sigma} \text { a.e. } t\right\} .
\end{aligned}
$$

Here $\widetilde{\vartheta} \equiv(0, \vartheta) \in \mathbf{R}^{2 n+2}, \Gamma^{\sigma}=\left\{X \in \mathbf{R}^{2 n+2} ; \sigma(Y, X) \geq 0\right.$ for any $\left.Y \in \Gamma\right\}$ for $\Gamma \subset \mathbf{R}^{2 n+2}$ and σ denotes the symplectic form on $T^{*} \mathbf{R}^{n+1}$.

Remark. $p_{z^{0}}(X)$ is hyperbolic w.r.t. $\widetilde{\vartheta}$.
Let $\left.z^{0} \equiv\left(x^{0}, \xi^{0}\right) \in \mathbf{R}_{+}^{n+1} \times\left(\mathbf{R}^{n+1} \backslash\{0\}\right)\right)$. If $\xi^{0 \prime}=0$, then $K_{z^{0}}^{ \pm}=\left(K_{x^{0}}^{ \pm} \cap \mathbf{R}_{+}^{n+1}\right) \times\left\{\xi^{0}\right\}$. If $p\left(x_{0}^{0}, \xi^{0 \prime}\right) \neq 0$, then $K_{z^{0}}^{ \pm}=\left\{z^{0}\right\}$. Moreover, $K_{z^{0}}^{ \pm}$are the broken null bicharacteristics of p in $T^{*} \mathbf{R}_{+}^{n+1} \backslash 0$ emanating from z^{0} in the direction where $\pm x_{0}$ increase, if $\xi^{0 \prime} \neq 0$ and $p\left(x_{0}^{0}, \xi^{0 \prime}\right)=0$. Assume that $\xi^{0 \prime} \neq 0$ and $p\left(x_{0}^{0}, \xi^{0 \prime}\right)=0$.

$K_{z^{0}}^{ \pm}$branch at every double characteristic point. Each segment is a null bicharacteristics. Each null bicharacteristics satisfies the following:

$$
\left\{\begin{array}{l}
\left(d / d x_{0}\right) x^{\prime \prime}\left(x_{0}\right)=\left(\left.\mp \nabla_{\xi^{\prime}} \sqrt{a\left(x_{0}, \xi^{\prime}\right)}\right|_{\xi^{\prime}=\xi^{0}}, 0, \cdots, 0\right) \\
\xi_{0}\left(x_{0}\right)= \pm \sqrt{a\left(x_{0}, \xi^{0 \prime}\right)}, \quad \xi^{\prime \prime}\left(x_{0}\right)=\xi^{0 \prime \prime}
\end{array}\right.
$$

By continuity $K_{z^{0}}^{ \pm}$can be defined as sets in $\overline{\mathbf{R}_{+}^{n+1}} \times\left(\mathbf{R}^{n+1} \backslash\{0\}\right)$ for $z^{0} \in \overline{\mathbf{R}_{+}^{n+1}} \times$ $\left(\mathbf{R}^{n+1} \backslash\{0\}\right)$.

Definition 2. Let $\delta>0$ and $f \in C\left([0, \delta] ; \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)\right)$. $W F_{0}(f) \subset T^{*} \mathbf{R}^{n} \backslash 0$ can be defined as follows: We say that $z^{0 \prime \prime} \equiv\left(x^{0 \prime \prime}, \xi^{0 \prime \prime}\right) \notin W F_{0}(f)$ if there are $\chi\left(x^{\prime \prime}, \xi^{\prime \prime}\right) \in S_{1,0}^{0}\left(\mathbf{R}^{n}\right)$, which is elliptic at $z^{0 \prime \prime}$, and $\delta^{\prime}>0$ such that $\chi\left(x^{\prime \prime}, D^{\prime \prime}\right) f \in$ $C\left(\left[0, \delta^{\prime}\right] ; H^{\infty}\left(\mathbf{R}^{n}\right)\right)$.

Remrk. (i) The above definition is a variant of Chazarain's definition. (ii) $z^{0 \prime \prime} \equiv\left(x^{0 \prime \prime}, \xi^{0 \prime \prime}\right) \notin W F_{0}(f)$ if and only if there are a neighborhood $U^{\prime \prime}$ of $x^{0 \prime \prime}$, a conic neighborhood $\Gamma^{\prime \prime}$ of $\xi^{0 \prime \prime}$ and $\delta^{\prime}>0$ such that for any $\varphi \in C_{0}^{\infty}\left(U^{\prime \prime}\right)$ there are $C_{N}>0$ ($N \in \mathbf{N}$) satisfying

$$
\left|\mathcal{F}_{x^{\prime \prime}}\left[\varphi\left(x^{\prime \prime}\right) f(x)\right]\left(\xi^{\prime \prime}\right)\right| \leq C_{N}\left\langle\xi^{\prime \prime}\right\rangle^{-N}
$$

for $N \in \mathbf{N}, x_{0} \in\left[0, \delta^{\prime}\right]$ and $\xi^{\prime \prime} \in \Gamma^{\prime \prime}$, where $\mathcal{F}_{x^{\prime \prime}}$ denotes the partial Fourier transformation with respect to $x^{\prime \prime}$.

Now we can state our main results.
Theorem 2. (I) Let $u \in \mathcal{D}^{\prime}\left(\mathbf{R}_{+}^{n+1}\right)$ satisfy, with $\delta>0, u \in C^{2}\left([0, \delta] ; \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)\right)$, and let $z^{0} \equiv\left(x^{0}, \xi^{0}\right) \in W F(u)$, where $x_{0}^{0}>0$.
(i) When $0<t<x_{0}^{0}, W F(u) \cap K_{z^{0}}^{-} \cap\left\{x_{0}=t\right\} \neq \emptyset$ if $W F(P u) \cap K_{z^{0}}^{-} \cap\left\{x_{0} \geq t\right\}=\emptyset$.
(ii) When $t>x_{0}^{0}$, $W F(u) \cap K_{z^{0}}^{+} \cap\left\{x_{0}=t\right\} \neq \emptyset$ if $W F(P u) \cap K_{z^{0}}^{+} \cap\left\{x_{0} \leq t\right\}=\emptyset$.
(iii) If $W F(P u) \cap K_{z^{0}}^{-} \cap\left\{x_{0}>0\right\}=\emptyset$, then

$$
\begin{aligned}
& \left(\bigcup_{j=0}^{1} W F\left(\left(D_{0}^{j} u\right)\left(0, x^{\prime \prime}\right)\right) \cup W F_{0}(P u)\right) \\
& \cap\left\{\left(x^{\prime \prime}, \xi^{\prime \prime}\right) ;\left(0, x^{\prime \prime}, \xi_{0}, \xi^{\prime \prime}\right) \in K_{z^{0}}^{-} \text {for some } \xi_{0} \in \mathbf{R}\right\} \neq \emptyset
\end{aligned}
$$

$$
\begin{equation*}
\bigcup_{k=0}^{2} W F_{0}\left(D_{0}^{k} u\right)=\left(\bigcup_{j=0}^{1} W F\left(\left(D_{0}^{j} u\right)\left(0, x^{\prime \prime}\right)\right) \cup W F_{0}(P u)\right) . \tag{II}
\end{equation*}
$$

(ii) Assume that the $a_{j, k}\left(x_{0}\right)$ can be extended to \mathbf{R} so that $a_{j, k}\left(x_{0}\right) \in C^{2}(\mathbf{R})$ and $a\left(x_{0}, \xi^{\prime}\right) \geq 0$ and that $P u \in C^{\infty}\left(\overline{\mathbf{R}_{+}^{n+1}}\right)$, for simplicity. If $t>0$ and $\left(x^{0 \prime \prime}, \xi^{0 \prime \prime}\right) \in \bigcup_{j=0}^{1} W F\left(\left(D_{0}^{j} u\right)\left(0, x^{\prime \prime}\right)\right)$, then

$$
W F(u) \cap\left\{(x, \xi) ; x_{0}=t \text { and }(x, \xi) \in K_{\left(0, x^{0 \prime \prime}, \xi^{0}\right)}^{+} \text {for some } \xi_{0}^{0} \in \mathbf{R}\right\} \neq \emptyset
$$

Let us illustrate Theorem 2 with some figures. Assume that $P u \in C^{\infty}\left(\overline{\mathbf{R}_{+}^{n+1}}\right)$,

$$
K_{z^{0}}^{+} \cup K_{z^{0}}^{-}
$$

for simplicity, and that $z^{0} \in W F(u)$. In the right figure the intersection $K_{z^{0}}^{+} \cap$ $\left\{x^{0}=t_{1}\right\}$ consists of 4 points. Then Theorem 2 insists that at least one point of these 4 points in the intersection must belong to $W F(u)$. Similarly, at least one point of 2 points of the intersection $K_{z^{0}}^{-} \cap\left\{x^{0}=t_{2}\right\}$ must belong to $W F(u)$ by Theorem 2 . Moreover, at least one point of 4 points of $\left\{\left(x^{\prime \prime}, \xi^{\prime \prime}\right)\right.$; $\left(0, x^{\prime \prime}, \xi_{0}, \xi^{\prime \prime}\right) \in K_{z^{0}}^{-}$for some $\left.\xi_{0} \in \mathbf{R}\right\}$
 must belong to $\bigcup_{j=0}^{1} W F\left(\left(D_{0}^{j} u\right)\left(0, x^{\prime \prime}\right)\right.$. Now we assume that $z^{0 \prime \prime} \in \bigcup_{j=0}^{1} W F\left(\left(D_{0}^{j} u\right)\left(0, x^{\prime \prime}\right)\right)$ and, for simplicity, $P u \in C^{\infty}\left(\overline{\mathbf{R}_{+}^{n+1}}\right)$. In the right figure the broken curves are equal to $\bigcup_{ \pm} K_{\left(0, x^{\prime \prime \prime}, \pm \sqrt{a\left(0, \xi^{0}\right)}, \xi^{0^{\prime \prime}}\right)}^{+}$. The intersection of the broken curves and $\left\{x^{0}=t\right\}$ consists of 4 points in this figure. Theorem 2 insists that at least one of these 4 points must belong to $W F(u)$.

$$
z^{0 \prime \prime} \in \cup_{j=0}^{1} W F\left(\left(D_{0}^{j} u\right)\left(0, x^{\prime \prime}\right)\right)
$$

3. Examples

Example 1. Let $n=n^{\prime}=2, a\left(x_{0}, \xi^{\prime \prime}\right)=\left(-\xi_{1} \sin x_{0}+\xi_{2} \cos x_{0}\right)^{2}$. Then $\bigcup_{\xi \neq 0} K_{(0, \xi)}^{+} \cap\left\{x_{0}=t\right\}$ is the following:

$t=2 \pi$

$t=5 / 2 \pi$

If $E(x)$ satisfies

$$
\begin{cases}P(x, D) E(x)=0 & \text { in } \mathbf{R}_{+}^{3} \\ E\left(0, x^{\prime \prime}\right)=0, \quad\left(D_{0} E\right)\left(0, x^{\prime \prime}\right)=i \delta\left(x^{\prime \prime}\right) & \text { in } \mathbf{R}^{2}\end{cases}
$$

then sing supp $E \subset \bigcup_{\xi \neq 0} K_{(0, \xi)}^{+}$. We could not prove the equality.
Example 2. Let $n=n^{\prime}=2, a\left(x_{0}, \xi^{\prime \prime}\right)=\left(\left(x_{0}^{2}-2 x_{0}\right) \xi_{1}+\xi_{2}\right)^{2}$ and $P(x, \xi)=p\left(x_{0}, \xi\right)$.
Then sing $\operatorname{supp} E=\bigcup_{\xi \neq 0} K_{(0, \xi)}^{+}$and $\bigcup_{\xi \neq 0} K_{(0, \xi)}^{+} \cap\left\{x_{0}=t\right\}$ is as follows:

$t=3 / 2$

$t=2$

$t=3$
Here, in order to prove the equality we have used the fact that $E\left(x_{0},-x^{\prime \prime}\right)=E(x)$ and results on branching of singularities for operators with non involutive characteristics given by Hanges and Ivrii.

4. Outline of Proof of Theorem 2

In order to prove Theorem 2 (I) (i) or (ii) we use results given in [KW]. To prove Theorem 2 (I) (iii) and (II) we apply the same arguments as used in [KW]. Let $z^{0} \in T^{*} \mathbf{R}_{+}^{n+1}$ satisfy $\left|\xi^{0}\right|=1$, and choose $\vartheta^{0} \in \Gamma\left(p_{z^{0}}, \widetilde{\vartheta}\right)$ so that $\sigma\left(r\left(z^{0}\right), \vartheta^{0}\right)=0$, where $r(x, \xi)=\sum_{j=0}^{n} \xi_{j} \frac{\partial}{\partial \xi_{j}}$. Put

$$
\begin{aligned}
& \varphi(z ; \kappa)=\tilde{\varphi}(z ; \kappa)\left(1+\tilde{\varphi}(z ; \kappa)^{2}\right)^{-1 / 2} \\
& \tilde{\varphi}(x, \xi ; \kappa)=\sigma\left(\vartheta^{0},\left(x-x^{0}, \xi /|\xi|-\xi^{0}\right)\right)+\kappa\left(\left|x-x^{0}\right|^{2}+\left|\xi /|\xi|-\xi^{0}\right|^{2}\right), \\
& \Lambda(x, \xi)=B \Psi(\xi / h)(\varphi(x, \xi ; \kappa)-\nu) \log \langle\xi\rangle_{h}+l \log \left(1+\delta\langle\xi\rangle_{h}\right) \\
& P_{\Lambda}(x, D)=\left(e^{-\Lambda}\right)(x, D) P(x, D)\left(e^{\Lambda}\right)(x, D)
\end{aligned}
$$

where $h \geq 1, \kappa, B, l, \nu>0, \delta \in[0,1],\langle\xi\rangle_{h}=\left(h^{2}+|\xi|^{2}\right)^{1 / 2}$ and $\Psi(\xi) \in S_{1,0}^{0}$ satisfies $\Psi(\xi)=1$ for $|\xi| \geq 1$ and $\Psi(\xi)=0$ if $|\xi| \leq 1 / 2$. We note that $-H_{\varphi}\left(z^{0}\right) \equiv$ $\left(-\left(\nabla_{\xi} \varphi\right)\left(z^{0}\right),\left(\nabla_{x} \varphi\right)\left(z^{0}\right)\right)=\vartheta^{0}$. In order to prove Theorem 2 (i) it suffices to show the following microlocal Carleman type estimates, choosing c_{0}, c_{1}, h so that $0<$ $c_{0}<x_{0}^{0}<c_{1}$ and $h \gg 1$: For any $\kappa>0$ there are $\nu_{0}>0, \chi_{k}(x, \xi) \in S_{1,0}^{0}(k=1,2)$ and $l_{k} \in \mathbf{R}(k=1,2,3)$ such that the $\chi_{k}(z)$ are positively homogeneous of degree 0 for $|\xi| \geq 1, \chi_{k}(z)=1$ near z^{0}, and "for any $\nu \in\left(0, \nu_{0}\right]$ there is $B_{0}>0$ such that「for any $B \geq B_{0}$ there is $l_{0}>0$ such that for any $l \geq l_{0}$ there are $\delta_{0} \in(0,1]$ and $C>0$ satisfying

$$
\left\|\chi_{1}(x, D / h) v\right\|_{l_{1}} \leq C\left\{\left\|P_{\Lambda}(x, D) v\right\|_{l_{2}}+\|v\|_{l_{1}-1}+\left\|\left(1-\chi_{2}(x, D / h)\right) v\right\|_{l_{3}}\right\}
$$

if $v \in C_{0}^{\infty}\left(\left(c_{0}, c_{1}\right) \times \mathbf{R}^{n}\right)$ and $\left.0<\delta \leq \delta_{0}.\right\lrcorner "$ Here $\|\cdot\|_{l}$ denotes the Sobolev norm of order l. So an essential part is to show the above estimates. We omit it as it is
long. The proof of Theorem 2 will be given in a forthcoming paper.

References

[IP] V. Ja. Ivrii and V. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk 29 (1974), 3-70. (Russian; English translation in Russian Math. Surveys.)
[W] S. Wakabayashi, On the Cauchy problem for second-order hyperbolic operators with the coefficients of their principal parts depending only on the time variable. (located in http://www.math.tsukuba.ac.jp/~wkbysh/)
[KW] K. Kajitani and S. Wakabayashi, Propagation of singularities for several classes of pseudodifferential operators, Bull. Sc. math., 2^{e} série, 115 (1991), 397-449.

