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1. Introduction
Let z = (x0,2") = (w0, 21, ,2,) € R, and denote by & = (£,&") =
(€0,&1,7 -+ ,&) € R™ their dual variables. The gy variable plays the role of the

time variable. We consider second-order hyperbolic operators with symbols
P(z, (o, &) + Z bj(z)€; + c(x

where

p(r0,€) =&+ Y aa(z)e™.

|a‘:27a0§1

We assume that

(A) the a,(z0) are real analytic on [0, 00) and b; (), c(x) € C*(R}™) (0 < j < n).

Here R = {x € R™; 25 > 0}. We consider the following Cauchy problem:

(CP) {P(:E,D)U(x) — f(z) in (0,00) x R,

Dju(®)ls=0 =u; R (j=0,1),

where f € C([0,00);D'(R™)) and u; € D'(R™) ( j = 0,1). We may assume by

coordinate transformation
ao(20) =0 if |a] =2 and ag = 1.
So P(z,£) can be written as follows:

P(z,€) = & — a(w0,€") + bo(2)& + b(z, €") + c(z),

n

a(wo, § Z a;r(20)&iék,  b(x,8") = ij(x)fj, ajx(z0) = agj(zo).

Jk=1 j=1
We assume the following conditions:

(H) a(xg,&") > 0 for (z0,&") € [0,00) x R™.
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(F) b(z,&”) =0 in x for any " € V, where V = {¢" € R"; a(z0,£") =0 in x0}.

If (CP) is C* well-posed, then it follows from the Lax-Mizohata theorem and results
in [IP] that (H) and (F) must be satisfied. By (H) V' is a vector subspace of R". So
we may assume, with 1 <n/ <n, that V ={¢" € R"; & = --- = £, = 0}, since the
case V' = R" is trivial. Then by (F) we have

a(gj(bg”) = (il?(), ) 7_é 0 in o for 5/ 7é 07 b(il?,f”) = b(x7€,)a
where ¢ = (&, ,&y). From (A) we have the following:

(i) For T > 0 there is k7 € N such that Z 0102 a(xo, &) # 0 for (x0,&) €
[0,T] x S, where S™~! denotes the (n/ — 1) dlmenswnal unit sphere.

(ii) There are r € N, real analytic functions \;(x¢) and v;x(zo) (1 <j<r, 1 <
k < n') defined on [0, 00) such that A;(xo) # 0, a(zo, &) = 327, Aj(0)¢j(o, &2,
where G0, €') = iy (@)

Let © be a neighborhood of [0,00) in C such that the a;(z) can be extended
analytically to 2, and define R(¢') = {(ReA)+; A € Q and a(), ') = 0} for & €
R™ \ {0}, where a, = max{a,0}. We assume

(L) For any 7" > 0 and z” € R", there is C' > 0 such that

min |z — t||b(z, &) < C\a(zo, &) for (z0,&) € [0,T] x (R™ \ {0}),

tER(E)
where minege) |zo —t| =1 if R(E) = 0.

(L) is a so-called Levi condition. Put

F( (x07 )7 ) {f € Rn+1 fO > VvV a I07 }
I*={ycR"; y-£>0forany ¢ €I},

where ¥ = (1,0,--- ,0) € R"*!. We define for 2° € R*!

K% = {x(t); £t >0, {z(t)} is a Lipschitz continuous curve in R’*!
and (d/dt)z(t) € T'(p(zo(t),-), )" a.e. t}
( CA{x; xj—x (n'+1<j<n)}).

Concerning C*° well-posedness we have the following

Theorem 1. (CP) has a unique solution u € C?([0,00); D'(R")). Let 2° € R}
If u satisfies (CP) and

(supp f U {0} x (suppuo Usuppuy)) N K, =0,
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then 2° ¢ supp u. Moreover, (CP) is C* well-posed.

Remark. We assume that (H), (F) and (A) are satisfied. Moreover, we assume
that the a; (7o) are polynomials of z, for example, when n’ > 3. Then (CP) is C*
well-posed if and only if (L) is satisfied.

For the proof of Theorem 1 we refer to [W].

2. Main results
Definition 1. Let 2° = (2°,£%) € R x (R™1\ {0})).
(i) The localization polynomial p,o(X) at z° is defined by

(2% +5X) = ") (po(X) +0(1) as s — 0, po(X)#0in X € R**?

(i) The generalized Hamilton flows K3 are defined by

K ={z(t); £t >0, {z(t)} is a Lipschitz continuous curve in T*R’*' \ 0
and (d/dt)z(t) € T(p.o, 9)° a.e. t}.

Here 9 = (0,9) € R2"2 7 = {X € R?2; ¢(Y,X) > 0 for any Y € I'} for
I' € R?"*2 and o denotes the symplectic form on T*R"*.

Remark. p.o(X) is hyperbolic w.r.t. J.

Let 20 = (22,€°) € R < (R™1\{0})). If £ = 0, then K35 = (K5NRET)x {€°}.
If p(z),£Y) # 0, then K5 = {2°}. Moreover, K7 are the broken null bicharacter-
istics of p in T*R/™ \ 0 emanating from 20 in the direction where %z, increase, if
Y £ 0 and p(z),£”) = 0. Assume that £¥ # 0 and p(z9,£Y) = 0.

Ty = 0
Kj% branch at every double characteristic point. Each segment is a null bicharac-
teristics. Each null bicharacteristics satisfies the following:

(d/d$0) xO :FVg\/ J,’O, |§, 50, e )
Eo(mo) = £+/a(mg, V), &' (xg) = £V



By continuity K7 can be defined as sets in R x (R {0}) for 2° € RTF! x
(R™1\{0}).

Definition 2. Let 6 > 0 and f € C([0,0];D'(R")). WEFy(f) € T"R™\ 0
can be defined as follows: We say that 2% = (zV,&Y) ¢ WE,(f) if there are
x(2",&") € SPo(R™), which is elliptic at 2%, and &' > 0 such that x(z",D")f €
C((0,8; H=(R™)).

Remrk. (i) The above definition is a variant of Chazarain’s definition. (ii)
2= (2%,€%) ¢ WEy(f) if and only if there are a neighborhood U” of 2%, a conic
neighborhood I of £% and ¢’ > 0 such that for any ¢ € C5°(U”) there are Cy > 0
( N € N) satisfying

[Farlio(a”) f(2)](€")] < O (€)™
for N € N, zy € [0,0'] and £” € T, where F,» denotes the partial Fourier transfor-
mation with respect to z”.

Now we can state our main results.

Theorem 2. (I) Let u € D'(RI™) satisfy, with 6 > 0, u € C?([0,4]; D'(R")),
and let 2° = (2°,£%) € WF(u), where z > 0.

(i) When 0 <t < 2, WF(u)NK  N{xo =t} # 0 if WF(Pu)NK N{xo >t} = 0.
(ii) When ¢t > 2, WF(u) N K} N{zg =t} # 0 if WE(Pu) N KN {zy <t} =0.
(iii) If WF(Pu) N K, N{xy > 0} =0, then

(U WFE((D§u)(0,2")) U W Fy(Pu))

J=0

N{(=",¢"); (0,27, 60,¢") € K, for some § € R} # 0

(D) () Uszo WE(Dgu) = (Uj—o WE(Dgu)(0,2”)) U W Fy(Pu)).

(i) Assume that the a;x(zo) can be extended to R so that a;i(z0) € C*(R)
and a(xg,&’) > 0 and that Pu € C®°(R}*"), for simplicity. If ¢ > 0 and
(2%, £%") € Uj_g WF((D}u)(0,2")), then

WEF(u) N {(z,€); zo =t and (z,£) € K o (o) for some & eR}#D.

Let us illustrate Theorem 2 with some figures. Assume that Pu € C®°(R™),



for simplicity, and that 2° € W F(u). In
the right figure the intersection KJ N
{2 = t,} consists of 4 points. Then
Theorem 2 insists that at least one
point of these 4 points in the intersec-
tion must belong to W F'(u). Similarly,
at least one point of 2 points of the in-
tersection K, N {z® = to} must belong
to W F(u) by Theorem 2. Moreover, at
least one point of 4 points of {(z”,¢&");
(0,2",&,¢") € K, for some & € R}

Zo

KLUK,

.l’[):tl

.l’():tg

.1’0:0

must belong to Ujl':o W F((D}u)(0,z"). Now we assume that 2 € U;:O W F((Dju)(0,z"))

and, for simplicity, Pu € C®(R}t).
In the right figure the broken curves are
equal to . K+ The

(0,29 + /a(o’gm)’gou)'

intersection of the broken curves and
{2 = t} consists of 4 points in this
figure. Theorem 2 insists that at least

one of these 4 points must belong to

3. Examples

X

N NS

Ty = 0
2 € UL WF((Dju)(0,2"))

Example 1. Let n = n' = 2, a(x,£") = (=& sinzg + &cosxg)?. Then

Uezo K.y N {0 = t} is the following:




If E(x) satisfies

P(z,D)E(z) =0 in R3,
E0,2") =0, (DyE)(0,2")=1id(z") in R?

then sing supp £ C U5 £0 K (Jg’g). We could not prove the equality.

Example 2. Let n = n' = 2, a(z,£") = ((23—210)&1+&2)% and P(x, ) = p(xo, £).

Then sing supp £ = Uy K ¢) and U K o) N {20 =t} is as follows:
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Here, in order to prove the equality we have used the fact that E(zq, —2") = E(x)
and results on branching of singularities for operators with non involutive charac-
teristics given by Hanges and Ivrii.

4. Outline of Proof of Theorem 2
In order to prove Theorem 2 (I) (i) or (ii) we use results given in [KW]. To prove

Theorem 2 (I) (iii) and (II) we apply the same arguments as used in [KW]. Let
20 e T*RY satisfy |€°] = 1, and choose 9° € ['(p,0,9) so that o(r(z°),9°) = 0,

where r(z,§) =37 fjaié. Put
j

p(z k) = @z 0) (1 + @2 8)%) 72,
P(2,& k) = (0, (v — 2% &/1€] = €)) + K(jz — 2 + |¢/1¢] = €°),
Az, &) = BU(§/h)(p(x, & k) — v)log(E)n + Llog(L + 6(E)n),
Py(z,D) = (e *)(z, D)P(x, D)(e*)(z, D),
where h > 1, k,B,l,v > 0, § € [0,1], (§)n = (h* + [{]*)*? and ¥(¢) € 5P,
satisfies W(¢) = 1 for [£] > 1 and (&) = 0 if |¢] < 1/2. We note that —H,(z") =

(—=(Vep)(29), (Vo) (2°)) = ¢¥°. In order to prove Theorem 2 (i) it suffices to show
the following microlocal Carleman type estimates, choosing cg, ¢1, h so that 0 <
¢o < x) < ¢y and h > 1: For any s > 0 there are vy > 0, xx(z,£) € SV, (£ =1,2)
and [, € R ( kK = 1,2,3) such that the xx(z) are positively homogeneous of degree
0 for [£] > 1, xx(2) = 1 near 2°, and “for any v € (0,1p] there is By > 0 such that
O for any B > By there is [y > 0 such that for any [ > [ there are ¢y € (0, 1] and
C' > 0 satisfying

Ix1(z, D/h)olli, < CEIPA(z, D)ol + vl -1 + [[(1 = xa(z, D/h))vl|i;}
if v € C3°((co,c1) x R") and 0 < § < §p.0 7 Here || - ||; denotes the Sobolev norm

of order [. So an essential part is to show the above estimates. We omit it as it is
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long. The proof of Theorem 2 will be given in a forthcoming paper.
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