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A. It is known that the coupling of some degenerate dissipative operator and a
conservative operator gives full dissipation and convergence to the equilibrium. Based on
the estimates on the collision operators for the Boltzmann equation without angular cutoff,
we obtain the convergence rate estimates on solutions to the equilibrium for both soft and
hard potentials. Our approach combines the compensating function method introduced by
Kawashima for the Boltzmann equation and the energy method.

1. 

The hypocoercivity theory which is closely related to, but is different from, the hy-
poellipticity theory has become one of the main focuses in the study of problems from
mathematical physics. The main feature of this theory is that the coupling of a degenerate
diffusion operator and a conservative operator may give the dissipation in all variables, and
the convergence to the equilibrium state which lies in a proper subspace of the kernel of
the diffusion operator. Breakthroughs have been made and substantial results have been
obtained recently, especially by Villani and his collaborators, on problems in bounded do-
mains or a torus. However, there are still many challenging problems remained unsolved.

We will focus on problems on the hypocoercivity theory for kinetic equations in the
whole space and try to obtain the optimal convergence rates of solutions to the equilibrium
states. One of the main differences between problems in a bounded domain and those in
the whole space is that only algebraic convergence rates are expected in the whole space
rather than (almost) exponential decay in the bounded domain.

Many kinetic equations and systems have the main structure

C( f ) = D( f ),

whereC is a conservative operator andD is a degenerate dissipative operator usually on the
velocity variables. The hypocoercivity theory is about the coupling of these two operators,
which leads to a full dissipation in all variables and the convergence to the equilibrium
in large time. Roughly speaking, the hypoellipticity issue is related to the fact that the
interaction of the “non-dissipative” first-order operatorB with the “dissipative”, but not
elliptic, part of an operatorL in the form of

L = −
m∑
j=1

A2
j + B, with m< n = dim,
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produces regularization in the missing directions so that the time evolution equation

ft + L f = 0,

presents some of the typical features of a parabolic equation. On the other hand, the
hypocoercivity theory is about the full dissipative large time behavior of the solution to
the equilibrium state in terms of convergence rates in all variables, which comes from the
interaction of the conservative operator and the degenerate diffusive operator. The hypoco-
ercivity theory has been studied and developed recently by many researchers, cf. the papers
by Villani and the references therein. However, most of the results obtained so far are about
the problems in a torus or in a bounded domain where (almost) exponential decay to the
equilibrium can be obtained. For problems in the whole space or in an exterior domain,
the convergence rate is no longer (almost) exponential but algebraic. Based on the previ-
ous work, we will focus on the perturbative problems around some equilibrium states, in
particular, in the setting of non-angular cutoff.

The hypocoercivity theory has been investigated extensively for physical models which
include the Boltzmann equation, oscillator chains, Fokker-Planck equation, etc. And some
elegant theorems on the (multiple) commutators in the spirit of Hörmander’s celebrated
regularity theorem for hypoelliticity phenomena have been established. Besides the study
on the problems in a bounded domain or in a torus, detailed studies on the Boltzmann
equation in the whole space were also carried out which include the well-posedness theory
in a new function space with less regularity assumption on the initial data, the optimal
convergene rates of the solutions and their spatial derivatives in time to the equilibrium,
and the effect of the external force on the convergence rate analysis.

2. M 

For non-equilibrium gas, Boltzmann in 1872 derived a time evolution equation for a
scalar function

f = f (t, x, v) t ∈ R+, x ∈ R3, v ∈ R3,

which stands for the probability (number) density function of gas particles having position
x and velocityv at timet satisfying:

∂ f
∂t
+ v · ∇x f = Q( f , f ),

whereQ, the collision operatordescribes the binary collision of molecules given by

Q( f , f ) =
∫
R3×S2

B(v− v∗, θ)( f ′ f ′∗ − f f∗)dv∗dω.

Here, f = f (t, x, v), f ′ = f (t, x, v′), f ′∗ = f (t, x, v′∗), f∗ = f (t, x, v∗) andv′ = v−
(
(v−v∗)·ω

)
ω,

v′∗ = v∗ +
(
(v− v∗) · ω

)
ω, come from the Conservation of momentum and energy, that is

v+ v∗ = v′ + v′∗, |v|
2 + |v∗|

2 = |v′|2 + |v′∗|
2.

There are two classical models:
• Hard sphere gas:

B(v− v∗, θ) = q0|v− v∗|| cosθ|,

• Potential of inverse power withU ∼ r−ρ:

B(v− v∗, θ) ∼ |v− v∗|
γ|θ|−2−2sb0(θ),

γ = 1−
4
ρ
, s=

1
ρ
,
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whereb0(θ) ≥ 0 does not vanish nearθ = 0. The interaction potential is called a hard
potential ifρ > 4, Maxwellian molecule ifρ = 4 and a soft potential if 1< ρ < 4.

Let us first review the works on convergence rates with Grad’s angular cutoff assump-
tion:
• Perturbation( denoted byu) around a global Maxwellian.
For hard potential, the following results are obtain:

(a) : Bounded Domain⇒ u = O(e−σt) (∃σ > 0) :
– Tx (Ukai);
– Bounded Domain with Boundary Conditions

(Giraud, Asano, Shizuta,· · · ).
(b) : Unbounded Domain⇒ u = O(t−σ) (∃σ > 0) :

– Rx (Ukai, Nishida-Imai);
– Exterior Domain (Ukai - Asano,· · · );
– Cauchy problem inL2 ∩ L∞β (Ukai-Y., ’06).

Note that the spatial derivatives of the solution inL2 norm have the following properties:

– : The l-th order space derivative of the solutionu decays as 0(t−σq,l ) for Lq pertur-
bation.

– : However, the velocity derivative∂`vu does not decay faster than 0(t−σq,0)
Here,

σq,l =
3
2

(
1
q
−

1
2

) +
l
2

On the other hand, imposing smallness conditions on the space derivatives leads to the
almost exponential decay in torus even for soft potentials:

(1) : Strain-Guo ’05: Consider the caseT3 with the cutoff soft potential and let̀ ≥ 4.
For anyk, if

ak = ‖u0‖H`+k
x,v

is sufficiently small, then

(AED) ‖u(t)‖H`x,v ≤ Cak(1+
t
k

)−k

holds for allt ≥ 0. Here, it is required that

ak → 0 (k→ ∞).

(2) : Desvillettes-Villani ’03: Suppose that there exists a smooth global solution sat-
isfying

u(t) ∈ BC0([0,∞); H`x,v)

for sufficiently largè > k. Then, (AED) also holds.
However, the situation is quite different from the one obtained by Strain-Guo:
Here, the smallness condition onu0 is not assumed and hence the solution may

be large, but the existence of such smooth large solutions is a big open problem at
the present moment.

For the case without angular cutoff, we obtain the following result on covergence rates
to equilibrium.

Theorem. (AMUXY, 2010)Let 0< s< 1 and f = µ + µ1/2 g be a global solution with
initial datum f0 = µ + µ1/2 g0. We have the following two cases:
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1) Let γ+2s≥ 0, N ≥ 6, ` > 3/2+2s+γ. There existsε0 > 0 such that if‖g0‖
2
L1(R3

x;L2(R3
v))
+

‖g0‖
2
HN
`

(R6)
≤ ε0 << 1, we have

‖g(t)‖2L2(R6) = ‖Pg(t)‖2L2(R6) + ‖(I − P)g(t)‖2L2(R6) . (1+ t)−3/2,∑
1≤|α|≤N

‖∂αPg(t)‖2L2(R6) +
∑
|α|≤N

‖∂α(I − P)g(t)‖2L2(R6) . (1+ t)−5/2.

2) Let max{−3,− 3
2 − 2s} < γ ≤ −2s,N ≥ 6, ` ≥ N + 1. There existsε0 > 0 such that if

‖g0‖
2
H̃N
`

(R6)
≤ ε0 << 1, we have

sup
x∈R3

‖g(t)‖2
HN−3(R3

v)
. (1+ t)−1.

Remarks: 1. Note that the convergence rate in the caseγ + 2s ≥ 0 is optimal because
it is the same as those for the linearized equation. The proof is based on the combination
of the Lp−Lq estimate on the solution operator to the linearized equation, and the energy
method. TheLp−Lq estimate can be obtained by the compensating function introduced by
Kawashima, or the spectrum estimate obtained by Pao.

2. The case whenγ + 2s < 0 corresponds to the soft potential in the cutoff case with
γ < 0, and the optimal convergence rate is not known even for cutoff potentials. So the
proof here is simply based on energy method.

In the following, we sketch some ideas of the proof.

I. γ + 2s≥ 0: Compensating function+ Energy method

Firstly, consider a linear equation
(∂t + v · ∇x + L)h = g,

h |t=0= h0,

whereL is the linearized collision operator.
Compensating function (Kawashima, 1990):
S(ω) is callled a compensating function if it satisfies the following three properties

(Kawashima):

(i) S(·) is C∞ on S2 taking values in the space of bounded linear operators onL2(R3),
andS(−ω) = −S(ω) for all ω ∈ S2.

(ii) iS(ω) is self-adjoint onL2(R3) for all ω ∈ S2.
(iii) There exists a constanc0 > 0 such that for allf ∈ L2(R3) andω ∈ S2,

R〈S(ω)(v · ω) f , f 〉 + 〈L f , f 〉 ≥ c0(|P f |22 + |(I − P) f |2D). (A)

Construction of the compensating function by Kawashima can be briefly described as
follows:

Let

W = span{ej | j = 1,2, · · · ,13}.
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Here, the orthonormal set of functionsej is given by

e1 = µ
1
2 , ei+1 = viµ

1
2 , i = 1,2,3, e5 =

1
√

6
(|v|2 − 3)µ

1
2 ,

and

ej+4 =

3∑
i=1

c ji
√

2
(v2

i − 1)µ
1
2 , j = 2,3

e8 = v1v3µ
1
2 , e9 = v2v3µ

1
2 , e10 = v3v1µ

1
2 ,

ei+10 =
1
√

10
(|v|2 − 5)viµ

1
2 , i = 1,2,3,

where the constant vectorsci = (ci1, ci2, ci3), i = 2,3 together withc1 = ( 1
√

3
, 1
√

3
, 1
√

3
) form

an orthonormal basis ofR3.
Let P0 be the orthogonal projection fromL2(R3

v) ontoW,

P0g =
13∑

k=1

(g,ek)L2(R3
v)ek.

SetWk = 〈 f ,ek〉, k = 1,2, · · · ,13, andW = [W1, ...,W13]T , WI = [W1, ...,W5]T , and
WII = [W6, ...,W13]T . Then w

∂tW+
∑

j

V j∂x j W+ LW = h+ R,

whereV j ( j = 1,2,3) andL are the symmetric matrices defined by

L = {(Lel ,ek)L2(R3
v)}

13
k,l=1, V j = {(v jek,el)L2(R3

v)}
13
k,l=1,

andh = [(h,e1)L2(R3
v), ..., (h,e13)L2(R3

v)]
T . HereRdenotes the remaining term which contains

the factor (I − P0)g.

V(ξ) =
3∑

j=1

V jξ j =

(
V11 V12

V21 V22

)
,

with

V11(ξ) =


0 ξ1 ξ2 ξ3 0
ξ1 0 0 0 a1ξ1
ξ2 0 0 0 a1ξ2
ξ3 0 0 0 a1ξ3
0 a1ξ1 a1ξ2 a1ξ3 0

 ,
and

V21(ξ) = V12(ξ)
T =



0 a21ξ1 a22ξ2 a23ξ3 0
0 a31ξ1 a32ξ2 a33ξ3 0
0 ξ2 ξ1 0 0
0 0 ξ3 ξ2 0
0 ξ3 0 ξ1 0
0 0 0 0 a4ξ1
0 0 0 0 a4ξ2
0 0 0 0 a4ξ3


,

wherea1 =

√
2
3 ,ak j =

√
2ck j, k = 2,3, j = 1,2,3, anda4 =

√
3
5.
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By setting

R(ξ) =
3∑

j=1

Rjξ j =

(
αR̃11 V12

−V21 0

)
,

with

R̃11 =


0 ξ1 ξ2 ξ3 0
−ξ1 0 0 0 0
−ξ2 0 0 0 0
−ξ3 0 0 0 0
0 0 0 0 0

 ,
it holds for some suitableα,

Re〈R(ω)V(ω)W,W〉 ≥ c1|WI |
2 − c2

4∑
k=2

|WII |
2.

Hence, for any givenω ∈ S2, setR(ω) ≡ {r i j (ω)}4i, j=1 and then

S(ω)g ≡
4∑

k,`=1

λrk`(ω)(g, è )L2(R3
v)ek,

is a compensating function with 0< λ << 1.

Lp − Lq estimate:
Taking the Fourier transform in x of the linear equation yields

ĝt + i|ξ|(v · ω)ĝ+Lĝ = ĥ,

whereω = ξ
|ξ|

.

Then take the inner product with ((1+ |ξ|2) − iκS(ω))ĝ and use the properties of the
compensating function, to get

((1+ |ξ|2)‖ĝ‖2
L2(R3

v)
− κ|ξ|(iS(ω)ĝ, ĝ)L2(R3

v))t

+ δ0((1+ |ξ|2)|||(I − P)ĝ|||2 + |ξ|2||Pĝ‖2
L2(R3

v)
)

≤ C(1+ |ξ|2)Re(ĝ, ĥ)L2(R3
v).

This implies that

E(ĝ)t + δ0
|ξ|2

1+ |ξ|2
E(ĝ) ≤ C‖ĥ‖2

L2(R3
v)
,

where

E(ĝ) = ‖ĝ‖2
L2(R3

v)
− κ

|ξ|

1+ |ξ|2
(iS(ω)ĝ, ĝ)L2(R3

v) ∼ ‖ĝ‖
2
L2(R3

v)
,

whenκ is chosen to be small. And this estimate yields

‖ĝ‖2
L2(R3

v)
≤ C exp{−

δ0|ξ|
2|t

1+ |ξ|2
}‖ĝ0‖

2
L2(R3

v)
+C

∫ t

0
exp{−

δ0|ξ|
2|(t − s)

1+ |ξ|2
}‖ĥ‖2

L2(R3
v)

(s)ds.

And this gives the following lemma.
Lemma (Kawashima). Let k ≥ k1 ≥ 0 andN ≥ 4. Assume that
(i) g0 ∈ HN(R6) ∩ Zq,
(ii ) h ∈ C0([0,∞[; HN ∩ Zq),
(iii ) Ph(t, x, v) = 0 for all (t, x, v) ∈ [0,∞) × R3 × R3.
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(iv) g(t, x, v) ∈ C0([0,∞[; HN(R6)) ∩ C1([0,∞[; HN−1(R6)) is a solution of the linear
equation.

Then we have

‖∇k
xg‖

2
L2(R6) ≤ C(1+ t)−2σq,m(‖∇k1

x g0‖Zq(R6) + ‖∇
k
xg0‖L2(R6))

2

+

∫ t

0
(1+ t − s)−2σq,m(‖∇k1

x h‖Zq(R6) + ‖∇
k
xh‖L2(R6))

2ds,

for any integerm= k− k1 ≥ 0, whereq ∈ [1,2] and

σq,m =
3
2

(1
q
−

1
2

)
+

m
2
.

Energy estimate:
Recall from existence theory, whenN ≥ 6 andl > 3/2+ 2s+ γ, we have

d
dt
E + D ≤ 0,

whereE = ‖g‖2
HN

l (R6)
andD = ‖∇xPg‖2

HN−1(R6)
+ |||(I − P)g|||2

BN
l (R6)

.

In fact, we can also prove

d
dt
E1 + D ≤ C‖∇xPg‖2

L2
x,v(R6)
,

whereE1 = ‖∇xPg‖2
HN−1(R6)

+ ‖(I − P)g‖2
HN

l (R6)
.

Estimate on the collision operator:
Recall

‖Γ( f , g)‖L2(R3
v) . ‖ f ‖L2(R3

v)‖g‖H2s
(γ+2s)+

(R3
v).

Hence, by using the fact thatN ≥ 6 and` > 3/2+ 2s+ γ, Sobolev imbedding implies

‖Γ(g,g)‖2
L2(R6

x,v)
+ ‖∇xΓ(g,g)‖2

L2(R6
x,v)
. E2 . E1E + ‖Pg‖4

L2(R6
x,v)
,

‖Γ(g,g)‖2Z1
. E1E + ‖Pg‖4

L2(R6
x,v)
.

Combination of the above three estimates:Define

M(t) = sup
0≤s≤t
{(1+ s)

5
2E1(s)}, M0(t) = sup

0≤s≤t
{(1+ s)

3
2 ‖g(s)‖2

L2(R6
x,v)
}.

Then by theLp − Lq estimate, we have

‖∇xg(t)‖2
L2(R6

x,v)
. (1+ t)−

5
2 (‖g0‖

2
Z1(R6) + ‖∇xg0‖

2
L2(R6

x,v)
)

+

∫ t

0
(1+ t − s)−

5
2 (‖Γ(g,g)‖Z1(R6) + ‖∇xΓ(g,g)‖L2(R6

x,v))
2ds

. η(1+ t)−
5
2 +

∫ t

0
(1+ t − s)−

5
2 (EE1 + ‖Pg‖4

L2(R6
x,v)

)(s)ds

. η(1+ t)−
5
2 + δM(t)

∫ t

0
(1+ t − s)−

5
2 (1+ s)−

5
2 ds

+M2
0(t)

∫ t

0
(1+ t − s)−

5
2 (1+ s)−3ds

. η(1+ t)−
5
2 + δ(1+ t)−

5
2 M(t) + (1+ t)−

5
2 M2

0(t),
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whereη = ‖g0‖
2
Z1(R6)

+ ‖g0‖
2
HN
`

(R6)
, andE < δ. Thus, we have

E1(t) ≤ E1(0)e−t +

∫ t

0
e−(t−s)‖∇xg‖

2
L2(R6

x,v)
(s)ds

. δe−t + η(1+ t)−
5
2 + δ(1+ t)−

5
2 M(t) + (1+ t)−

5
2 M2

0(t),

that is,

M(t) . (δ + η) + δM(t) + M2
0(t).

By applying theLp − Lq estimate again, we have

‖g(t)‖2
L2(R6

x,v)
. (1+ t)−

3
2 (‖g0‖

2
Z1(R6) + ‖g0‖

2
L2(R6

x,v)
)

+

∫ t

0
(1+ t − s)−

3
2 (‖Γ(g,g)‖Z1(R6) + ‖Γ(g,g)‖L2(R6

x,v))
2(s)ds

. η(1+ t)−
3
2 +

∫ t

0
(1+ t − s)−

3
2 (EE1 + ‖Pg‖4

L2(R6
x,v)

)(s)ds

. η(1+ t)−
3
2 + δ(1+ t)−

3
2 M(t) + (1+ t)−

3
2 M2

0(t).

Hence,

M0(t) . η + δM(t) + M2
0(t)

. (η + δ) + M2
0(t).

By assumption,η + δ is small. The above estimate and the continuity argument give
M0(t) ≤ Cη,δ, and thenM(t) ≤ C̄η,δ, whereCη,δ andC̄η,δ are two constants depending onη
andδ only.

Then the convergence rates for the hard potential case stated in the theorem follow.

II. γ + 2s< 0: energy method

We first recall the following lemma.
Lemma (Deckelnick).Let f (t) ∈ C1([t0,∞)) such that

f (t) ≥ 0, A =
∫ ∞

t0

f (t)dt < ∞

and
f ′(t) ≤ a(t) f (t), t ≥ t0.

If a(t) ≥ 0 andB =
∫ ∞

t0
a(t)dt < ∞, then

f (t) ≤
(t0 f (t0) + 1) exp(A+ B) − 1

t
, t ≥ t0.

First of all, the basic energy estimate derived for the global existence gives

d
dt
EN,` + c0DN,` ≤ 0,

wherec0 > 0 is a constant. Here,

EN,` ∼ ‖A‖
2
HN(R3) + ‖g2‖

2
H̃N
`

(R6)
,

DN,` = ‖∇xA‖
2
HN−1(R3) + ‖g2‖

2
B̃N
`

(R6)
,
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and

B̃
N
` (R6) =

{
g ∈ S′(R6); ||g||2

B̃
N
` (R6)

=
∑

|α|+|β|≤N

∫
R3

x

|||W̃`−|β| ∂
α
βg(x, · )|||2Φγdx< +∞

}
.

We can also construct another functionalĒN−1,`−1 that has the following property

ĒN−1,`−1 ∼ ‖∇xA‖
2
HN−2(R3) + ‖∇xg2‖

2
H̃N−2
`−1 (R6)

,

and
d
dt
ĒN−1,`−1 + η0D̄N,`−1 . ‖∇xA‖

2
HN−1(R3

x)

(
‖∇xA‖

2
HN−2(R3

x)
+ ‖g2‖

2
L2(R6)

)
. ‖∇xA‖

2
HN−1(R3

x)
ĒN−1,`−1.

Since ∫ ∞

0
(ĒN−1,`−1 + ‖∇xA‖

2
HN−1(R3

x)
)dt < ∞,

By using the assumption that` − 1 ≥ N, the lemma implies that

ĒN−1,`−1 . (1+ t)−1.

Finally, the references of this note can be found in the references in our recent paper:

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang,Boltzmann equation without
angular cutoff in the whole space: III, Qualitative properties of solutions, Preprint HAL,
http://hal.archives-ouvertes.fr/hal-00510633/fr/.
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