On wave equations with time dependent coefficients of the Gevrey class

(Title is changed)

Fumihiko Hirosawa
Yamaguchi University, Japan

Introduction

Kirchhoff equation (vibration of elastic string):
(K)

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\left(1+\int_{I}\left|\partial_{x} u(t, x)\right|^{2} d x\right) \partial_{x}^{2}\right) u(t, x)=0 \\
& \left(\partial_{t}^{2}-a(t)^{2} \partial_{x}^{2}\right) u(t, x)=0 \\
& E_{s}(t)=\frac{1}{2}\left(a(t)^{2}\|\partial u(t, \cdot)\|_{s}^{2}+\left\|\partial_{t} u(t, \cdot)\right\|_{s}^{2}\right) \\
& E_{s}^{\prime}(t)=a^{\prime}(t) a(t)\|\partial u(t, \cdot)\|_{s}^{2} \\
& =2 a(t) \Re\left(\partial \partial_{t} u(t, \cdot), \partial u(t, \cdot)\right)_{s}\|\partial u(t, \cdot)\|_{s}^{2} \\
& \leq 2 a(t)\left\|\partial_{t} u(t, \cdot)\right\|_{\frac{1}{2}}\|\partial u(t, \cdot)\|_{\frac{1}{2}}\|\partial u(t, \cdot)\|_{s}^{2} \\
& \leq C E_{s}(t)^{2} \\
& \boldsymbol{E}_{s}(\boldsymbol{t}) \leq\left(\boldsymbol{E}_{s}(0)-\boldsymbol{C} \boldsymbol{t}\right)^{-1} \quad \cdots \text { time local estimate! }
\end{aligned}
$$

Consider the following Cauchy problem:
(C) $\left\{\begin{array}{l}\left(\partial_{t}^{2}-a(t)^{2} \Delta\right) u(t, x)=0,(t, x) \in[0, \infty) \times \mathbb{R}^{n}, ~\end{array}\right.$ $\left(u(0, x), u_{t}(0, x)\right)=\left(u_{0}(x), u_{1}(x)\right), \quad x \in \mathbb{R}^{n}$.
(A0)

$$
0<a_{0} \leq a(t) \leq a_{1}
$$

[Colombini - De Giorgi - Spagnolo (1979)]

$$
a \in C^{\alpha}([0, \infty)) \Rightarrow(\mathrm{C}) \text { is } \gamma^{s} \text { well-posed with } s<\frac{1}{1-\alpha}
$$

$f(x) \in \gamma^{s}$ (Gevrey class of order s)
$\Leftrightarrow|\hat{f}(\xi)| \leq C \exp \left(-\rho|\xi|^{\frac{1}{s}}\right)(s>1, \exists C>0, \exists \rho>0)$
$\forall s>\frac{1}{\alpha-1},\left|\left(\hat{u}(0, \xi), \hat{u}_{t}(0, \xi)\right)\right| \exp \left(\rho|\xi|^{\frac{1}{3}}\right)<\infty, \exists T>0$
$\lim _{t \rightarrow T-0}\left|\left(\hat{u}(t, \xi), \hat{u}_{t}(t, \xi)\right)\right| \exp \left(-\rho|\xi|^{\frac{1}{3}}\right)=\infty$

Well-posedness in γ^{s} for $a \in C^{\alpha}$
Singular \longrightarrow Regularity of $\boldsymbol{a (t)} \rightarrow$ Regular

α	0	α	1	\cdots
$\frac{1}{s}$	1	$1-\alpha$	$0\left(L^{2}\right.$ well-posed $)$	

Big
Regularity loss

$$
\begin{aligned}
& \frac{a(t) \in C^{1}([0, \infty))}{} \\
& \quad E(t)=\frac{1}{2}\left(a(t)^{2}\|\nabla u(t, \cdot)\|^{2}+\left\|\partial_{t} u(t, \cdot)\right\|^{2}\right)
\end{aligned}
$$

$$
a(t) \equiv \text { const. } \Rightarrow E(t) \equiv E(0) \quad \text { (Energy Conservation) }
$$

$$
a(t) \not \equiv \text { const } . \Rightarrow E(t) \not \equiv E(0)
$$

$$
a^{\prime}(t)>0 \Rightarrow E^{\prime}(t) \geq 0, a^{\prime}(t)<0 \Rightarrow E^{\prime}(t) \leq 0
$$

$$
E^{\prime}(t)=a^{\prime}(t) a(t)\|\nabla u(t, \cdot)\|^{2}\left\{\begin{array}{l}
\leq \frac{2\left|a^{\prime}(t)\right|}{a(t)} \boldsymbol{E}(t) \\
\geq-\frac{2\left|a^{\prime}(t)\right|}{a(t)} \boldsymbol{E}(t)
\end{array}\right.
$$

$$
\Longrightarrow E(t)\left\{\begin{array}{l}
\leq \exp \left(C \int_{0}^{t}\left|a^{\prime}(\tau)\right| d \tau\right) E(0) \\
\geq \exp \left(-C \int_{0}^{t}\left|a^{\prime}(\tau)\right| d \tau\right) E(0)
\end{array}\right.
$$

$\underline{a(t) \in C^{1}([0, \infty))}$

$$
\left|a^{\prime}(t)\right| \leq C \Longrightarrow E(t) \lesseqgtr E(0) \exp (\pm \rho(1+t))
$$

$$
a^{\prime}(t) \in L^{1}\left(\mathbb{R}^{+}\right) \Longrightarrow E(t) \lesseqgtr C^{ \pm 1} E(0) \quad \cdots(G E C)
$$

$(G E C)=$ Generalized Energy Conservation

$$
\begin{aligned}
\left|a^{\prime}(t)\right| & \leq C(1+t)^{-\beta},(0<\beta \leq 1) \\
& \Longrightarrow E(t) \begin{cases}\lesseqgtr E(0) \exp \left(\pm \rho(1+t)^{-\beta+1}\right) & (\beta<1) \\
\lesseqgtr E(0)(1+t)^{ \pm M} & (\beta=1)\end{cases}
\end{aligned}
$$

Main purpose: We realize a benefit of C^{m} property of $\boldsymbol{a}(\boldsymbol{t})$ on the estimate of $\boldsymbol{E}(\boldsymbol{t})$.

C^{2} property without a stabilization of the coefficients

Example. $-1 \leq \mu(\tau) \leq 1, \mu \in C^{1}$ and 1-periodic

$$
a(t)=2+\mu(\log (e+t))
$$

$\| \longrightarrow\left|a^{\prime}(t)\right| \leq C(1+t)^{-1}$
C^{1}-property; $\mu \in C^{1} \Longrightarrow E(t) \lesseqgtr E(0)(1+t)^{ \pm M}$
C^{2}-property; $\mu \in C^{2} \Longrightarrow E(t) \lesseqgtr C^{ \pm 1} E(0) \quad \cdots(G E C)$
Theorem. ([Reissig-Smith (2005)])

$$
\left|a^{(k)}(t)\right| \leq C(1+t)^{-k} \quad(k=1,2) \Longrightarrow(G E C)
$$

Remark.
(i) $\left|a^{\prime}(t)\right| \leq C(1+t)^{-1}$ is sharp for (GEC).
(ii) C^{2} property of $\boldsymbol{a}(\boldsymbol{t})$ is required.
(iii) Necessity of the condition to $\boldsymbol{a}^{\prime \prime}(\boldsymbol{t})$ is an open problem.

Remark.

$$
\begin{aligned}
a(t) & =2+\mu(\omega(t)), \omega^{\prime}(t) \geq 0 \\
& \Longrightarrow \int_{0}^{T}\left|a^{\prime}(t)\right| d t \simeq \int_{0}^{T}\left|\omega^{\prime}(t)\right| d t=\omega(T):
\end{aligned}
$$

number of oscillations on $[\mathbf{0}, \boldsymbol{T}]$
$\boldsymbol{a}^{\prime}(\boldsymbol{t}) \in \boldsymbol{L}^{1}((0, \infty)) \Leftrightarrow$ finite numbers of oscillations

We have (GEC) for an infinitely oscillating coefficient!

$$
E^{\prime}(t)\left\{\begin{array}{lll}
\geq 0 & \text { for } a^{\prime}(t)>0 & \Rightarrow(E(t) \nearrow) \\
\leq 0 & \text { for } a^{\prime}(t)<0 \Rightarrow & (E(t) \searrow)
\end{array}\right.
$$

Remark. We can separate the oscillation of the coefficient by a precise representation of the microenergy in high frequency on C^{2}-property:

$$
C_{2-} \frac{a(t)}{a\left(t_{0}\right)} \mathcal{E}\left(t_{0}, \xi\right) \leq \mathcal{E}(t, \xi) \leq C_{2+} \frac{a(t)}{a\left(t_{0}\right)} \mathcal{E}\left(t_{0}, \xi\right)
$$

$$
\left|a^{\prime}(t)\right| \leq C(1+t)^{-\beta}
$$

$$
\begin{aligned}
& \beta>1 \Rightarrow(\mathrm{GEC}) \cdots \text { very slow oscillation (trivial case) } \\
& \beta=1 \Rightarrow(\mathrm{GEC}) \cdots \text { slow oscillation (critical case) } \\
& \beta<1 \Rightarrow \text { no (GEC) } \cdots \text { very fast oscillation } \\
& \qquad \begin{array}{c}
\text { Contribution of } C^{2} \text { property of } a(t): \\
\left|a^{\prime \prime}(t)\right| \leq C(1+t)^{-2}
\end{array}
\end{aligned}
$$

Question. Can (GEC) hold under additional assumptions to higher order derivatives for very fast oscillating coefficients?

C^{m} property with a stabilization of the coefficients

(GEC) does not hold for the very fast oscillating coefficients:

$$
a(t)=2+\cos \left((1+t)^{p}\right) \quad(p>0)
$$

However, (GEC) can be valid under the assumption to the coefficient, which is called the stabilization property, though very fast oscillation.

$$
\int_{0}^{t}\left|a(s)-a_{\infty}\right| d s \leq C(1+t)^{\alpha} \quad(0 \leq \alpha<1)
$$

(stabilization property)

Theorem. ([H. (2007)] cf. [Cicognani - H. (2008)]) .

$$
\begin{gathered}
\left|a^{(k)}(t)\right| \leq C_{k}(1+t)^{-k \beta}(1 \leq k \leq m, m \geq 2), \alpha \leq \beta \\
\longleftrightarrow E(t) \lesseqgtr E(0) \exp \left(\pm \rho(1+t)^{\sigma}\right) \\
\sigma=\max \left\{0, \frac{1+\alpha(m-1)}{m}-\beta\right\}
\end{gathered}
$$

Corollary. $\left|a^{(k)}(t)\right| \leq C_{k}(1+t)^{-k \beta}(k \in \mathbb{Z}), \alpha \leq \beta$

$$
\begin{aligned}
& \longleftrightarrow E(t) \lesseqgtr E(0) \exp \left(\pm \rho(1+t)^{\sigma}\right) \\
& \quad \sigma= \begin{cases}0 & (\alpha<\beta) \\
\forall \varepsilon>0 & (\alpha=\beta) \quad \text { (critical case!) }\end{cases}
\end{aligned}
$$

Remark. $\boldsymbol{\beta}<\boldsymbol{\alpha} \Rightarrow$ exists a counterexample of non-(GEC)

On the estimates $\boldsymbol{E}(\boldsymbol{t}) \lesseqgtr \boldsymbol{E}(\mathbf{0}) \exp \left(\pm \boldsymbol{\rho}(\mathbf{1}+\boldsymbol{t})^{\sigma}\right)$

$$
\begin{aligned}
& \int_{0}^{t}\left|a(s)-a_{\infty}\right| d s \lesssim(1+t)^{\alpha},\left|a^{\prime}(t)\right| \leq C(1+t)^{-\beta} \\
&(0 \leq \alpha \leq \beta<1)
\end{aligned}
$$

Singular			Regularity of \boldsymbol{a}			
m	1	2	\ldots	m	\ldots	∞
σ	$1-\beta$	$\frac{\alpha+1}{2}-\beta$	\ldots	$\frac{1+\alpha(m-1)}{m}-\beta$	\cdots	$\alpha-\beta=0$

Unstable

The refined diagonalization with C^{m} property of $\boldsymbol{a}(\boldsymbol{t})$:

$$
\left|a^{(k)}(t)\right| \leq C(1+t)^{-k \beta} \quad(k=1, \cdots, m)
$$

can conclude (GEC) for very fast oscillation $\beta<1$!
if $a(t)$ satisfies the stabilization property.
F Contradiction to the example of no (GEC):

$$
a(t)=2+\cos \left((1+t)^{p}\right) \quad(p>0)
$$

does not satisfy the stabilization property

$$
\int_{0}^{t}\left|a(s)-a_{\infty}\right| d s \leq C(1+t)^{\alpha} \quad(0 \leq \alpha<1)
$$

(stabilization property)

Critical case for the Gevrey coefficients

$$
\begin{gathered}
\left|a^{(k)}(t)\right| \leq C_{k}(1+t)^{-k \beta}(k \in \mathbb{Z}, \alpha<\beta) \\
\beta \rightarrow \alpha
\end{gathered}
$$

(G) $\quad\left|a^{(k)}(t)\right| \leq C k!^{\nu}\left((1+t)^{\alpha}(\log (e+t))^{\delta}\right)^{-k} \quad(k \in \mathbb{Z})$

Theorem. $\int_{0}^{t}\left|a(s)-a_{\infty}\right| d s,(G), \nu>1 \Rightarrow$

$$
E(t) \lesseqgtr E(0) \exp \left(\pm \rho(\log (e+t))^{\sigma}\right), \sigma=\max \{0, \nu-\delta\}
$$

Key of the proof

-Refined diagonalization
-Division of infinitely many zones

- Algebra of the Gevrey functions

$\left(1+t_{0}\right)^{\alpha}|\xi|=N$
- Division of infinitely many zones

$$
\begin{gathered}
Z_{k}=\left\{(t, \xi) ; t_{k-1} \leq t \leq t_{k}\right\} \\
\left(1+t_{k}\right)^{\alpha}\left(\log \left(e+t_{k}\right)\right)^{\delta}|\xi|=(k+1)^{\nu}
\end{gathered}
$$

- Algebra of the Gevrey functions

$$
\sum_{j=0}^{n}\binom{n}{k}\left(\frac{k!(n-k)!}{n!}\right)^{\nu} \leq C \Leftrightarrow \nu>1
$$

[1] F. Colombini - E. De Giorgi - S. Spagnolo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979).
[2] M. Reissig - J. Smith, Hokkaido Math. J. 34 (2005).
[3] F. Hirosawa, Math. Ann. 339 (2007).
[4] M. Cicognani - F. Hirosawa, Math. Scand. 102 (2008).

