Energy estimates for wave equations with time dependent coefficients

Fumihiko HIROSAWA ${ }^{1}$

We consider the following Cauchy problem for a wave equation with time dependent propagation speed $a=a(t)$:

$$
\left\{\begin{array}{l}
\left(\partial_{t}^{2}-a(t)^{2} \Delta\right) u=0, \quad(t, x) \in(0, \infty) \times \mathbb{R}^{n} \tag{1}\\
\left(u(0, x),\left(\partial_{t} u\right)(0, x)\right)=\left(u_{0}(x), u_{1}(x)\right), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

where we suppose that $a \in C^{1}([0, \infty))$, and $a_{0} \leq a(t) \leq a_{1}$ for positive constants a_{0} and a_{1}. Then the total energy of (1) at t is given by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left(a(t)^{2}\|\nabla u(t, \cdot)\|_{L^{2}}^{2}+\left\|\partial_{t} u(t, \cdot)\right\|_{L^{2}}^{2}\right) \tag{2}
\end{equation*}
$$

If $a(t)$ is a constant, then the energy conservation $E(t) \equiv E(0)$ holds. However, such a property does not hold in general for variable variable propagation speeds; thus we consider the following energy estimates:

$$
\begin{equation*}
\eta(t)^{-1} E(0) \leq E(t) \leq \eta(t) E(t) \quad(t \rightarrow \infty) \tag{3}
\end{equation*}
$$

where the error $\eta(t)$ is monotone increasing and satisfies $\eta(t)>1$. In particular, we call the estimate (3) with $\eta(t)=C$ generalized energy conservation ($=\mathrm{GEC}$), where C is a positive constant.

If $\left|a^{\prime}(t)\right| \leq C$, then by the inequalities

$$
-\frac{2\left|a^{\prime}(t)\right|}{a(t)} E(t) \leq E^{\prime}(t)=a^{\prime}(t) a(t)\|\nabla u(t, \cdot)\|_{L^{2}}^{2} \leq \frac{2\left|a^{\prime}(t)\right|}{a(t)} E(t)
$$

we have (3) with $\eta(t)=e^{C t}$. Moreover, if $\left|a^{\prime}(t)\right| \leq C(1+t)^{-\beta}$ for a $\beta \geq 0$, then we have (3) with $\eta(t)=e^{C t^{-\beta+1}}$ for $\beta<1, \eta(t)=t^{C}$ for $\beta=1$, and $\eta(t)=C$ for $\beta>1$; thus faster decaying $\left|a^{\prime}(t)\right|$ contribute to the stabilization of the energy.

If $a \in C^{2}([0, \infty))$, then the order of $\eta(t)$ can be improved as follows:
Theorem 1 ([5]). If $a \in C^{2}([0, \infty))$ satisfies

$$
\begin{equation*}
\left|a^{(k)}(t)\right| \leq C_{k}(1+t)^{-k} \tag{4}
\end{equation*}
$$

for $k=1,2$, then $G E C$ is valid.

[^0]Moreover, if $a \in C^{m}([0, \infty))(m \geq 2)$, then the order of $\eta(t)$ can be improved corresponding to m under the following assumption, which is called the stabilization property:

$$
\begin{equation*}
\int_{0}^{t}\left|a(s)-a_{\infty}\right| d s=O\left(t^{\alpha}\right) \quad(0 \leq \alpha<1) \tag{5}
\end{equation*}
$$

where $a_{\infty}=\lim _{t \rightarrow \infty} \int_{0}^{t} a(s) d s / t$.
Theorem $2([2])$. If $a \in C^{m}([0, \infty))(m \geq 2)$ satisfies (5) for $a \alpha \in[0,1)$ and

$$
\begin{equation*}
\left|a^{(k)}(t)\right| \leq C_{k}(1+t)^{-k \beta} \tag{6}
\end{equation*}
$$

for $k=1, \cdots, m$, then we have (3) with $\eta(t)=\exp \left(C t^{\sigma_{m}}\right)$, where

$$
\begin{equation*}
\sigma_{m}=\max \left\{0, \alpha-\beta+\frac{1-\alpha}{m}\right\} . \tag{7}
\end{equation*}
$$

Let us consider the limit case of Theorem 2 as $m \rightarrow \infty$ to introduce the Gevrey class γ^{ν} $(\nu>1)$:

$$
\gamma^{\nu}=\left\{f(t) \in C^{\infty}([0, \infty)) ;\left|f^{(k)}(t)\right| \leq C \rho^{-k} k!^{\nu}, \quad \exists \rho>0\right\} .
$$

For $a \in \gamma^{\nu}$ and a non-negative constant δ we introduce the following conditions:

$$
\begin{equation*}
\left|a^{(k)}(t)\right| \leq C k!^{\nu}\left((1+t)^{\alpha}(\log (e+t))^{\delta}\right)^{-k}(k=1,2, \cdots) . \tag{8}
\end{equation*}
$$

Then we have the following result, which gives precise estimates of (3) for $m=\infty$ and $\alpha=\beta$:
Theorem 3 ([3]). If $a \in \gamma^{\nu}$ satisfies (5) and (8) for $a \alpha \in[0,1$), then we have (3) with $\eta(t)=\exp \left(C(\log t)^{\sigma}\right)$, where

$$
\begin{equation*}
\sigma=\max \{0, \nu-\delta\} . \tag{9}
\end{equation*}
$$

Summarizing Theorem 2 and Theorem 3, we have the following table for the relations between the smoothness of $a(t)$ and the order of $\eta(t)$ under the assumptions (5) and (8) with $\delta=0$:

$a(t)$	C^{1}	$C^{m}(m \geq 2)$	C^{∞}	$\gamma^{\nu}(\nu>1)$
$\eta(t)$	$\exp \left(C t^{1-\alpha}\right)$	$\exp \left(C t^{\frac{1-\alpha}{m}}\right)$	$\exp \left(C t^{\varepsilon}\right)$	$\exp \left(C(\log t)^{\nu}\right)$

where ε is an arbitrarily positive constant.

References

[1] F. Colombini and T. Nishitani, On second order weakly hyperbolic equations and the Gevrey classes. Workshop on Blow-up and Global Existence of Solutions for Parabolic and Hyperbolic Problems (Trieste, 1999), Rend. Istit. Mat. Univ. Trieste 31 (2000), 31-50.
[2] F. Hirosawa, On the asymptotic behavior of the energy for the wave equations with time depending coefficients. Math. Ann. 339 (2007), 819-839.
[3] F. Hirosawa, Energy estimates for wave equations with time dependent propagation speeds of the Gevrey class. Preprint.
[4] W. Matsumoto, Direct proof of the perfect block diagonalization of systems of pseudo-differential operators in the ultradifferentiable classes, J. Math. Kyoto Univ. 40 (2000) 541-566.
[5] M. Reissig, J. Smith, $L^{p}-L^{q}$ estimate for wave equation with bounded time dependent coefficient. Hokkaido Math. J. 34 (2005), 541-586.

[^0]: ${ }^{1}$ Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan, hirosawa@yamaguchi-u.ac.jp

