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1 Fourier transformation

1.1 Definition of the Fourier transformation

Proposition 1.1 (Fourier series). Let L > 0 and f(x) be a 2L-periodic function. If f(x) ∈ L2((−L,L)),
then f(x) is represented by the following trigonometric series:

f(x) =
∞∑

n=−∞
cn exp

(
iπnx

L

)
, (1.1)

where

cn =
1

2L

∫ L

−L

exp
(
− iπnx

L

)
f(x) dx. (1.2)

Let us denote

kn =
πn

L
, F (kn) =

1√
2π

∫ L

−L

exp (−iknx) f(x) dx, (1.3)

it follows that

f(x) =
1√
2π

∞∑
n=−∞

π

L
F (kn) exp (ixkn) . (1.4)

Here F (kn) describes the spectral strength. Then we consider the limit L → ∞ as follows:

f(x) =
1√
2π

∞∑
n=−∞

π

L
F (kn) exp (ixkn) → 1√

2π

∫ ∞

−∞
F (ξ) exp (ixξ) dξ (L → ∞).

Actually, f(x) = (f(x − 0) + f(x + 0))/2 if f(x) is not continuous at x = 0.

Definition 1.1 (Fourier transformation and inverse transformation). Let f(x) ∈ L2(R). We define the
Fourier transformation of f(x) by

F [f(x)](ξ) :=
1√
2π

∫ ∞

−∞
e−ixξf(x) dx = F (ξ). (1.5)

On the other hand, for F (ξ) ∈ L2(R) we define the inverse transformation of F (ξ) by

F−1[F (ξ)](x) :=
1√
2π

∫ ∞

−∞
eixξF (ξ) dx = f(x). (1.6)

Proposition 1.2. F−1 [F [f(x)](ξ)] (x) = f(x).

1.2 Some properties

Let us denote F [f(x)](ξ) = F (ξ) and F [g(x)] = G(ξ). The following properties are established:

(i) F [f(−x)](ξ) = F (−ξ);

(ii) F [af(x) + bg(x)](ξ) = aF (ξ) + bG(ξ);

(iii) F [f(x − a)](ξ) = e−iaξF (ξ);

(iv) F [f(ax)](ξ) = 1
|a|F ( ξ

a );

(v) F [xnf(x)](ξ) = inF (n)(ξ);

(vi) F [f (n)(x)](ξ) = (iξ)nF (ξ);

(vii) F [
∫ x

−∞ f(y)dy](ξ) = 1
iξ F (ξ);
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(viii) F [(f ∗ g)(x)](ξ) = F (ξ)G(ξ), (f ∗ g)(x) = 1√
2π

∫∞
−∞ f(y)g(x − y)dy.

Example 1.1.

F
[
exp

(
−ax2

)]
(ξ) =

1√
2a

exp
(
− ξ2

4a

)
.

Proof.

F
[
exp

(
−ax2

)]
(ξ) =

1√
2π

∫ ∞

−∞
e−ixξ−ax2

dx =
1√
2π

e−
ξ2

4a

∫ ∞

−∞
exp

(
−a

(
x +

iξ
2a

)2
)

dx

=
1√
2π

exp
(
− ξ2

4a

)∫ ∞

−∞
exp

(
−ax2

)
dx =

1√
2πa

exp
(
− ξ2

4a

)∫ ∞

−∞
exp

(
−y2

)
dx

=
1√
2a

exp
(
− ξ2

4a

)
.

F

[
a

a2 + x2

]
(ξ) = π exp (−2πaξ) .

F

[
exp

(
−|x|

a

)]
(ξ) =

2r

1 + 4π2a2ξ2
.

f(x) =

{
1
a |x| < a

2 ,

0 |x| ≥ a
2 ,

F [f(x)](ξ) =
sin(πaξ)

πaξ
.

Proposition 1.3 (Parseval’s identity). Let f, g ∈ L2(R). Then the following identity is established:∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (ξ)|2dx. (1.7)

Proof. Let us define g(x) =
∫∞
−∞ f(x + y)f(y)dy. Then we have

G(ξ) =
1√
2π

∫ ∞

−∞
e−ixξ

∫ ∞

−∞
f(x + y)f(y)dy dx

=
1√
2π

∫ ∞

−∞
eiyξf(y)

(∫ ∞

−∞
e−i(x+y)ξf(x + y)dx

)
dy

=F (ξ)
∫ ∞

−∞
eiyξf(y)dy =

√
2πF (ξ)F (ξ).

It follows that ∫ ∞

−∞
f(x + y)f(y)dy =

1√
2π

∫ ∞

−∞
eixξG(ξ) dξ =

∫ ∞

−∞
eixξF (ξ)F (ξ) dξ.

Therefore, as x → 0 we have ∫ ∞

−∞
f(x)f(y)dy =

∫ ∞

−∞
F (ξ)F (ξ)dy. (1.8)
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1.3 Applications of Fourier transformation to PDE

Wave equation. Let us consider the following in initial value problem for the wave equation:{
utt − a2uxx = 0, (t, x) ∈ (0,∞) × R,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R,
(1.9)

where a > 0 describes the propagation speed of the wave. By partial Fourier transformation with respect
to x we have {

vtt + a2ξ2v = 0, (t, ξ) ∈ (0,∞) × R,

û(0, ξ) = û0(ξ) = v0(ξ), ût(0, ξ) = û1(ξ) = v1(ξ), ξ ∈ R,
(1.10)

where v(t, ξ) = û(t, ξ) = 1√
2π

∫∞
−∞ e−ixξu(t, x) dx. Then the solution to (1.10) is given as follows:

v(t, ξ) =
1
2

(
v0(ξ) +

v1(ξ)
iaξ

)
eiaξt +

1
2

(
v0(ξ) −

v1(ξ)
iaξ

)
e−iaξt. (1.11)

Therefore, by inverse Fourier transformation, the solution to the original problem (1.9) is given by

u(t, x) =
∫ ∞

−∞
eixξ

(
1
2

(
v0(ξ) +

v1(ξ)
iaξ

)
eiaξt +

1
2

(
v0(ξ) −

v1(ξ)
iaξ

)
e−iaξt

)
dξ. (1.12)

Recalling the formulas F−1[F (ξ)eiaξt](x) = f(x + at) and

F−1

[
v1(ξ)
iaξ

]
(ξ) =

1
a

∫ x

−∞
F−1[v1(ξ)](y)dy =

1
a

∫ x

−∞
u1(y)dy,

we have

u(t, x) =
1
2

(
u0(x + at) + u0(x − at) +

1
a

∫ x+at

x−at

u1(y)dy

)
. (1.13)

Heat equation. Let us consider the following in initial value problem for the heat equation:{
ut − cuxx = 0, (t, x) ∈ (0,∞) × R,

u(0, x) = u0(x), x ∈ R,
(1.14)

where c > 0. By partial Fourier transformation with respect to x we have{
vt + cξ2v = 0, (t, ξ) ∈ (0,∞) × R,

û(0, ξ) = û0(ξ) = v0(ξ), ξ ∈ R.
(1.15)

Therefore, the solution to (1.15) is given by

v(t, ξ) = v0(ξ) exp
(
−cξ2t

)
. (1.16)

Thus the solution to the original problem is represented as follows:

u(t, x) =
1√
2π

∫ ∞

−∞
eixξv0(ξ) exp

(
−cξ2t

)
dξ

=F−1
[
v0(ξ) exp

(
−cξ2t

)]
(x)

=
1√
2π

∫ ∞

−∞
u0(y)F−1

[
exp

(
−cξ2t

)]
(y − x)dy

=
1

2
√

πct

∫ ∞

−∞
u0(y) exp

(
− (x − y)2

4ct

)
dy.
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Schrödinger equation. Let us consider the following in initial value problem for the Schrödinger
equation: {

ut − iuxx = 0, (t, x) ∈ (−∞, 0) ∪ (0,∞) × R,

u(0, x) = u0(x), x ∈ R.
(1.17)

Putting c = i to the solution of the heat equation, the solution of (1.17) is represented as follows:

u(t, x) =
1

2
√

iπt

∫ ∞

−∞
u0(y) exp

(
− (x − y)2

4it

)
dy. (1.18)

1.4 Energy conservation

Let us consider the energy of the solution to the wave equation of (1.9):

utt − a2uxx = 0. (1.19)

Here the propagation speed a is given by a = T/ρ if u describes the shape of a string whose tension and
the density are T , and ρ respectively. Then the total energy of (1.9) at t in physical meaning is given by

EW (t) :=
1
2

∫ ∞

−∞
|ut(t, x)|2dx +

1
2
a2

∫ ∞

−∞
|ux(t, x)|2dx, (1.20)

where the first, and the second terms describe the kinetic energy, and the elastic energy respectively.
Then recalling the Parceval Formula we have

EW (t) :=
1
2

∫ ∞

−∞

(
|vt(t, ξ)|2 + a2ξ2|v(t, ξ)|2

)
dξ, (1.21)

where v(t, ξ) = û(t, ξ). Then we have the following property, which is called the energy conservation:

Proposition 1.4. Let u(t, x) be a solution of (1.9), and u(t, x) ∈ C2([0,∞); L2(Rx)). Then the energy
conservation law: EW (t) ≡ EW (0) is established.

Proof. Differentiating EW (t) with respect to t we have

d

dt
EW (t) =

∫ ∞

−∞

(
ℜ{uttut} + a2ℜ{uxtux}

)
dx

=
∫ ∞

−∞
a2ℜ{uxxut}dx −

∫ ∞

−∞
a2ℜ{utuxx}dx = 0,

which conclude the energy conservation law.

Let us assume that the solution to the Cauchy problem (1.9) satisfies u(t, x) ∈ C2([0,∞);L2(Rx)).
Then we can define the following energy of microlocal version to the solution of (1.10) as follows:

EW (t, ξ) =
1
2
(
|vt(t, ξ)|2 + a2ξ2|v(t, ξ)|2

)
. (1.22)

Then we have the following proposition, which give that the energy conservation in each frequency:

Proposition 1.5. Let v(t, ξ) be a solution of (1.10), and v(t, ξ) ∈ C2([0,∞);L∞(Rξ)). Then the energy
conservation law of microlocal version: EW (t, ξ) ≡ EW (0, ξ) is established.

Let v(t, ξ) be the solution of (1.15), which is reduced from the Cauchy problem of the heat equation
(1.14). If we define EH(t, ξ) by

EH(t, ξ) =
1
2
|v(t, ξ)|2, (1.23)

then we have
∂tEH(t, ξ) = ℜ{vtv} = −cξ2|v|2 = −2cξEH(t, ξ). (1.24)
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It follows that
EH(t, ξ) = EH(0, ξ)e−2cξ2t. (1.25)

Therefore, we see that EH(t, ξ) decays exponential order for |ξ| > 0. Here we note that the estimate
(1.25) does not bring the exponential order decay of the ∥v(t, ·)∥L2(Rx) = ∥u(t, ·)∥L2(Rξ).

Remark 1.1. Actually, if u0(x) ∈ L1(R) ∩ L2(R), then the following decay estimate is established:

∥u(t, ·)∥2
L2(Rn) ≤ C(1 + t)−

1
2 , (1.26)

where C = C(∥u0∥L1(R), ∥u0∥L2(R)).

Exercise 1.1. Consider the following initial boundary value problem of the heat equation:
ut − cuxx = 0, (t, x) ∈ (0,∞) × [0, 2π],

u(0, x) = u0(x), x ∈ [0, 2π],

u(t, 0) = u(t, 2π) = 0, t ∈ [0,∞),

(1.27)

where c > 0. Prove that EH(t) := 1
2∥u(t, ·)∥2

L2((0,2π) decays exponential order.

Let u(t, x) be a solution to the Cauchy problem of Schrödinger equation (1.17): If we introduce the
energies of (1.17), and the corresponding Cauchy problem of v(t, ξ) = û(t, ξ) by

ES(t) =
1
2

∫ ∞

−∞
|u(t, x)|2dx, and ES(t, ξ) =

1
2
|v(t, ξ)|2 (1.28)

respectively, then we have the following energy conservation:

Proposition 1.6. Let u(t, x) be a solution of (1.17), and u(t, x) ∈ C1([0,∞);L∞(Rξ)), then the energy
conservation laws ES(t) ≡ ES(0) and ES(t, ξ) ≡ ES(0, ξ) are established.

Proof. (Exercise)

Remark 1.2. If we define the energies to the solution of the Cauchy problem of the Klein-Gordon
equation: {

utt − a2uxx + u = 0, (t, x) ∈ (0,∞) × R,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R,
(1.29)

by

EK(t) =
1
2

∫ ∞

−∞

(
|ut(t, x)|2 + a2|ux(t, x)|2 + |u(t, x)|2

)
dξ, (1.30)

and
EK(t, ξ) =

1
2
(
|vt(t, ξ)|2 + a2ξ2|v(t, ξ)|2 + |v(t, ξ)|2

)
, (1.31)

then the energy conservation laws: EK(t) ≡ EK(0) and EK(t, ξ) ≡ EK(0, ξ) are established.

2 Second order hyperbolic equations with constant coefficients

2.1 Hyperbolicity

Let us consider the following second order partial differential equation:(
α∂2

t + 2β∂t∂x + γ∂2
x

)
u = f(u, ut, ux), (2.1)

where α, β, γ are real valued, and α ̸= 0. Denoting ∂t = λ and −i∂x = ξ, we have the following
characteristic equation for the principal part of (2.1):

αλ2 + 2iβλξ − γξ2 = 0. (2.2)
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Then we classify the type of the equation (2.1) corresponding to the solutions of (2.2):

λ =
−iβξ ± iξ

√
β2 − αγ

α

as follows: 
β2 > αγ ⇔ hyperbolic;

β2 = αγ ⇔ parabolic;

β2 < αγ ⇔ elliptic.

Let α = 1. By partial Fourier transformation (2.1) is reduced to the following equation:

vtt + 2iβξvt − γξ2v = 0. (2.3)

Remark 2.1. If β = 0, (2.1) is an elliptic equation for γ > 0. Then denoting γ = c2 for c ∈ R we have

v(t, ξ) = C1 exp (cξt) + C2 exp (−cξt) ,

which gives that the solution growth in exponential order with respect to t since ξ ̸= 0.

From now on we consider the hyperbolic case: γ < 0. Denoting −γ = a2, β = b and c =
√

a2 + b2 for
a > 0, the solution to the Cauchy problem

vtt + 2ibξvt + a2ξ2v = 0, v(0, ξ) = v0(ξ), vt(0, ξ) = v1(ξ) (2.4)

is represented as follows:

v(t, ξ) = C1 exp (−i (b − c) ξt) + C2 exp (−i (b + c) ξt) ,

where

C1 =
b + c

2c
v0(ξ) +

v1(ξ)
2icξ

, C2 = −b − c

2c
v0(ξ) −

v1(ξ)
2icξ

.

Thus the structure of the solution is completely different between the elliptic equations and hyperbolic
equations.

Remark 2.2. Denoting λ1± = −iξ(b ± c), we have

vtt + 2ibξvt + a2ξ2v = (∂t − λ1+) (∂t − λ1−) v = 0.

The solution to the equation (∂t −λ1+)w = 0 is given by w = C3(ξ) exp(λ1+t). Therefore, v is a solution
to

(∂t − λ1−) v = C3(ξ) exp(λ1+t).

Hence we have

v(t, ξ) = v0(ξ)eλ1−t + eλ1−t

∫ t

0

C3eλ1+τ−λ1−τdτ = v0(ξ)eλ1−t +
C3

λ1+ − λ1−
eλ1+t.

Exercise 2.1. Prove that if the equation Pu = (∂2
t +2b∂x∂t−a2∂2

x)u = 0 is hyperbolic, then the solution
to the Cauchy problem: {

Pu = 0, (t, x) ∈ (−∞, 0] ∪ [0,∞) × R,

u(0, x) = u0(x), ut(0, x) = u1 x ∈ R
(2.5)

is represented as follows:

u(t, x) =
1
2c

(
(b + c)u0(x − (b − c)t) − (b − c)u0(x − (b + c)t) +

∫ x−(b−c)t

x−(b+c)t

u1(y)dy

)
. (2.6)

where c =
√

a2 + b2.
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2.2 Reduction to first order system

Let us consider the following Cauchy problem:{(
∂2

t + 2ibξ∂t + a2ξ2
)
v = 0, (t, ξ) ∈ (0,∞) × R,

v(0, x) = v0(ξ), vt(0, ξ) = v1(ξ), ξ ∈ R.
(2.7)

Then the the equation of (2.7) is represented as follows:

(∂t + iξ(b + c)) (∂t + iξ(b − c)) v = 0.

Here we remark that the operators ∂t + iξ(b + c) and ∂t + iξ(b − c) are commutative. Denoting

w1 = vt + iξ(b − c)v, w2 = vt + iξ(b + c)v, (2.8)

we have

∂tw1 = −iξ(b + c)w1, ∂tw2 = −iξ(b − c)w2.

Thus, the second order single equation of (2.7) is reduced to the following first order system:

∂tW = AW, A(ξ) =
(
−iξ(b + c) 0

0 −iξ(b − c)

)
, W =

(
w1

w2

)
. (2.9)

Then the solution of (2.9) is represented as follows:

W (t, ξ) = exp
(∫ t

t0

A(ξ) dτ

)
W (t0, ξ) =

∞∑
k=0

1
k!

(∫ t

t0

A(ξ) dτ

)k

W (t0, ξ)

=
(

e−iξ(b+c)(t−t0) 0
0 e−iξ(b−c)(t−t0)

)
W (t0, ξ).

It follows that

vt(t, ξ) + iξ(b ± c)v(t, ξ) = e−iξ(b±c)(t−t0) (vt(t0, ξ) + iξ(b ± c)v(t0, ξ)) .

Consequently, we have the following important property for hyperbolic model:

Theorem 2.1. Let a, b be constants of real numbers. Then we have the following estimate of the energy
conservation:

|W (t, ξ)|2 ≡ |W (t0, ξ)|2 (2.10)

for any t0 ≤ t, where

|W (t, ξ)|2 = |vt(t, ξ) − iξ(b + c)v(t, ξ)|2 + |vt(t, ξ) − iξ(b + c)v(t, ξ)|2 .

Proof.

∂t|W (t, ξ)|2 = 2ℜ{∂tw1w1} + 2ℜ
{
w2∂tw2

}
= 0.

Hence we have |W (t, ξ)|2 ≡ |W (t0, ξ)|2 for any t ≥ t0.

Remark 2.3. The energy for the wave equation EW (t, ξ) is not conserved for the general hyperbolic
model (2.7), but |W (t, ξ)|2 is conserved. Thus not EW (t, ξ) but |W (t, ξ)|2 should be a reasonable energy
of microlocal version to the general hyperbolic equation (2.7).

The following lemma ensures the equivalence between |W (t, ξ)|2 and EW (t, ξ):

Lemma 2.1. The relation |W (t, ξ)|2 ≃ |vt(t, ξ)|2 + ξ2|v(t, ξ)|2 holds, where f ≃ g denotes that there
exists positive constants C1 and C2 such that the estimates C1g ≤ f ≤ C2g uniformly hold.
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Proof. We can assume that b ̸= 0, hence c2 > 0. Let ε be a positive small constant. By Schwarz inequality
we have

|W (t, ξ)|2 =2|vt|2 + 2ξ2
(
b2 + c2

)
|v|2 + 4ℜ{iξbvtv}

≥2ε
(
|vt|2 + ξ2|v|2

)
+ 2(1 − ε − δ)|vt|2 + 2ξ2

(
b2 + c2 − ε − b2

δ

)
|v|2

≥2ε
(
|vt|2 + ξ2|v|2

)
,

where δ, and ε are chosen small, and near 1 respectively, satisfying 0 < δ, ε < 1, ε + δ ≤ 1 and
c2 ≥ ε + b2( 1

δ − 1). On the other hand, the estimate from above is trivial.

3 Variable coefficients models

3.1 Background

The hyperbolic equation (∂2
t + 2b∂x∂t − a2∂2

x)u = f(u, ∂tu, ∂xu) can be generalized to the following
equation of variable coefficients:

(∂2
t + 2b(t, x)∂x∂t − a(t, x)2∂2

x)u = f(t, x, ∂tu, ∂xu).

Actually, the models of variable coefficients are natural generalizations from the point of view of mathe-
matics. But they are important from the point of view for the applications of physics and engineering.

• Wave equation with variable propagation speed with respect to x:(
∂2

t − ∂xa(x)2∂x

)
u = 0 : wave propagation in anisotropic media. (3.1)

Here we remark that the energy of this equation in R at t is given by

EW (t) =
1
2

∫ ∞

−∞

(
a(x)2|∂xu(t, x)|2 + |∂tu(t, x)|2

)
dx. (3.2)

Then we have the energy conservation EW (t) ≡ EW (0). Indeed, we have

d

dt
EW (t) =

∫ ∞

−∞

(
a(x)2ℜ{∂xu(t, x)∂x∂tu(t, x)} + ℜ{∂2

t u(t, x)∂tu(t, x)}
)

dx

= lim
R→∞

(
a(R)2ℜ{∂xu(t, R)∂tu(t, R)

)
+
∫ ∞

−∞

(
−ℜ{∂xa(x)2∂xu(t, x)∂tu(t, x)} + ℜ{∂2

t u(t, x)∂tu(t, x)}
)

dx

=0.

• Wave equation with time dependent speed:(
∂2

t − a(t)2∂2
x

)
u = 0 (3.3)

is a linearized model of non-linear wave equation of Kirchhoff type:

∂2
t u −

(
1 +

∫ ∞

−∞
|∂xu(t, x)|2dx

)
∂2

xu = 0. (3.4)

Here the Kirchhoff equation has the following energy conservation law:

EKi(t) :=
1
2

(
∥∂tu(t, ·)∥2 +

∫ ∥∂u(t,·)∥2

0

(1 + η)dη

)
. (3.5)

9



Indeed, we see that

d

dt
EKi(t) =

(
ℜ (∂ttu, ∂tu)L2(R) +

(
1 + ∥∂u(t, ·)∥2

)
ℜ (∂∂tu, ∂u)L2(R)

)
= 0.

The global solvability for Kirchhoff equation is said that a very hard open problem. Global solv-
ability is solved essentially for realanalytic, and small data in [1], and [6] respectively. [17] is helpful
to understand the overview for the research of Kirchhoff equation.

• The Cauchy problems of hyperbolic equations with constant coefficients are L2 wellposed, that is,
the following energy estimate is established:

∥u(t, ·)∥H1(R) + ∥∂tu(t, ·)∥L2(R) ≤ C
(
∥u0(·)∥H1(R) + ∥u1(·)∥L2(R)

)
(3.6)

for any t ∈ [0, T ], where C may depend on T . However, the L2 well-posedness is not true in general
for the hyperbolic equations with variable coefficients. If the coefficients are t dependent, then the
solutions of the characteristic equation λ2 +2ib(t)ξλ+a(t)ξ2 = 0 can coincide for ξ ̸= 0; this brings
a crucial problem. Such equations are called weakly hyperbolic equations, and there are number of
studies about it.

Let p and q be positive real numbers. The following weakly hyperbolic equation is studied by [13]:(
∂2

t − t2p∂2
x + tq−1∂x

)
u = 0. (3.7)

When t → 0, then the term of ∂2
x cannot be dominant the lower order term anymore by the size

of p to q. Indeed, the Cauchy problem of (3.7) is C∞ well-posed near t = 0 if and only if q ≥ p.
This means that the singular effect of the coefficient; the degeneration of as t → 0, brings loss of
derivative of the solution.

Let a(t) is bounded from above and below by positive constants. The solution to the wave equation
with time dependent propagation speed:(

∂2
t − a(t)2∂x

)
u = 0 (3.8)

is possible to lose its regularity without degeneration of the principal part and lower order terms.
A natural energy of (3.8) will be EW (t) = 1

2 (a(t)2∥∂u(t, ·)∥2
L(R)2 + ∥∂tu(t, ·)∥2

L2(R) on the analogy
of the constant coefficient case. However, we immediately meet a crucial problem if we estimate
EW (t) to reduce a differential inequality and Gronwall’s inequality; this is not only a technical
but also an essential problem. Indeed, the L2 well-posedness is not true in general if a(t) is not a
Lipchitz continuous function. The influence of singularities of the propagation speed a(t), in the
sense of non-Lipschitz continuity, to the order of loss of regularity of the solution is studied in [4]
and [5], for instance.

• Let b(t, x) ≥ 0. The dissipative wave equation(
∂2

t − ∂2
x + 2b(t, x)∂t

)
u = 0, (3.9)

describes the wave phenomenon with variable friction b(t, x). We immediately see that d
dtEW (t) ≤ 0,

hence the total energy is decreasing. The next problems are the energy decay and the decay order.
If b is a positive constant, then the following decay estimate is established:

EW (t) = C(1 + t)−1,

where the constant C depends on ∥u0∥H1 and ∥u1∥L2 . On the other hand, if b = b(x) = O(1+|x|)−α,
or b = b(t) = O(1 + t)−α for α > 1, then the energy does not decay. Indeed, if b(t) = (1 + t)−α,
then we have

∂tEW (t) = −2b(t)∥ut∥2
L2 ≥ −4b(t)E(t),
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it follows that

E(t) ≥ E(0) exp
(
−4
∫ t

0

(1 + s)−αds

)
≥ CE(0).

If b(t) = b0(1 + t)−1 and b0 > 0, then we have

E(t) ≤ C(1 + t)−σ, σ = 2 min{b0, 1}.

Generally, one may expect that stronger dissipation brings faster decay estimate, however, it is not
true. For the energy decay and non-decay problems are studied in [14], [15], [19], [20] and references
of them.

3.2 Factorized model

Let us consider the following hyperbolic equation with lower order term:(
∂2

t − a(t)2∂2
x − a′(t)∂x

)
u = 0. (3.10)

By partial Fourier transformation we have

vtt + a(t)2ξ2v − ia′(t)ξv = 0. (3.11)

Here this equation can be factorized as follows:

(∂t − iξa(t)) (∂t + iξa(t)) v = 0. (3.12)

Therefore, the solution of (3.11) with the initial data (v(0, ξ), vt(0, ξ)) = (v0(ξ), v1(ξ)) is represented as
follow:

v(t, ξ) =v0(ξ) exp
(
−iξ

∫ t

0

a(τ)dτ

)
+
(

v1(ξ)
−iξa(0)

− v0(ξ)
)

exp
(
−iξ

∫ t

0

a(τ)dτ

)∫ t

0

exp
(

2iξ
∫ τ

0

a(σ)dσ

)
dτ.

Let w be a solution of wt− iξa(t)w = 0. Then v is a solution to the following inhomogeneous equation:

(∂t + iξa(t)) v = w, (3.13)

it follows that we have the following system:

∂tY =
(

iξa(t) 0
1 −iξa(t)

)
Y, Y =

(
w

v

)
=
(

vt + iξa(t)v
v

)
. (3.14)

Therefore, the following property for a sort of conservation is established:

|vt(t, ξ) + iξa(t)v(t, ξ)|2 = |v1(ξ) + iξa(0)v0(ξ)|2, ∀(t, ξ). (3.15)

Generally, the factorized hyperbolic equations with time dependent coefficients are given as follows:(
∂2

t − λ1(t)λ2(t)ξ2v − iξ (λ1(t) + λ2(t)) ∂t − iλ′
2(t)ξ

)
v = 0

⇔ (∂t − iξλ1(t)) (∂t − iξλ2(t)) v = 0.

Then the solution is represented by

v(t, ξ) =v0(ξ) exp
(

iξ
∫ t

0

λ2(τ)dτ

)
+
(

v1(ξ)
iξλ2(0)

− v0(ξ)
)

exp
(

iξ
∫ t

0

λ2(τ)dτ

)∫ t

0

exp
(

iξ
∫ τ

0

(λ1(σ) − λ2(σ)) dσ

)
dτ.

We have observed from the examples above that the factorized models are essentially single equations.
Thus we should focus non-factorized model from now on.
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3.3 Reduction to first order systems

Let us consider the following Cauchy problem of the wave equation with variable propagation speed:{(
∂2

t − a(t)2∂2
x

)
u = 0, (t, x) ∈ (0,∞) × R,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R.
(3.16)

By partial Fourier transformation the equation is rewritten to the following problem:{(
∂2

t + a(t)2ξ2
)
v = 0, (t, x) ∈ (0,∞) × R,

v(0, ξ) = v0(ξ), vt(0, ξ) = v1(ξ), x ∈ R,
(3.17)

where a ∈ C1([0,∞)) and 0 < a0 ≤ a(t) ≤ a1. Then the following energy is naturally proposed on an
analogy of the constant coefficient model:

E(t, ξ) =
1
2
(
a(t)2ξ2|v(t, ξ)|2 + |vt(t, ξ)|2

)
. (3.18)

Here the total energy of (3.16) is given by

E(t) =
1
2
(
a(t)2∥∂u(t, ·)∥2 + ∥ut(t, ·)∥2

)
. (3.19)

Differentiating E(t, ξ) with respect to t we have

∂tE(t, ξ) = a′(t)a(t)ξ2|v(t, ξ)|2.

Here we observe that if a′(t) is not a constant, then the energy E(t, ξ) is not conserved. Generally, we
cannot expect the energy conservation for variable coefficient model, because this effect describes an
external force. (We don’t say that any conserved quantity does not exist.) Therefore, we introduce a sort
of conservation, which is called the generalized energy conservation in [8] by

E(t) ≃ E(0), (3.20)

and
E(t, ξ) ≃ E(0, ξ). (3.21)

Here we note that these properties do not require that limt→∞ |E(t) − E(0)| = 0 and limt→∞ |E(t, ξ) −
E(0, ξ)| = 0. In this sense, (3.20) and (3.21) are not perturbation of the constant coefficient model. We
immediately have (3.20) from (3.21), hence we shall consider only the latter estimate from now on.

If a(t) is a monotone increasing function, then we have

−2a′(t)
a(t)

E(t, ξ) ≤ ∂tE(t, ξ) ≤ 2a′(t)
a(t)

E(t, ξ).

Therefore, by Gronwall’s inequality we have

a(0)2

a(t)2
E(0, ξ) ≤ E(t, ξ) ≤ a(t)2

a(0)2
E(0, ξ),

that is, (3.21). If a(t) is monotone decreasing, then we have (3.21) by the same argument. If a′(t)
changes its sign at most finite time, then we also have (3.21) immediately. Therefore, our problem must
be restricted in the case that a′(t) changes its sign infinitely many times.

If a′(t) changes its sign infinite times, but a′(t) ∈ L1((0,∞)), then we easily see that the following
proposition is valid:

Proposition 3.1. If a′(t) ∈ L1((0,∞), then (3.21) holds.
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Let us reduce the equation of (3.17) to the following first order system:

∂tV1 = A1V1, V1 =
(

vt − iξav

vt + iξav

)
, (3.22)

where

A1 =

(
−iξa + a′

2a − a′

2a

− a′

2a iξa + a′

2a

)
= Λ1 + B1 = Φ1 + R1, (3.23)

Λ1 =
(
−iξa 0

0 iξa

)
, B1 =

(
a′

2a − a′

2a

− a′

2a
a′

2a

)
,

Φ1 =

(
−iξa + a′

2a 0
0 iξa + a′

2a

)
, R1 =

(
0 − a′

2a

− a′

2a 0

)
.

Here we note that the decomposition A1 = Λ1 +B1 is natural from the point of view for the perturbation
of constant coefficient model. On the other hand, we prefer to employ the other decomposition, which
the diagonal entries are not pure imaginary valued. Indeed, such decomposition is essential in our
consideration for the future.

Let us denote

ϕ1 = −iξa +
a′

2a
and r1 = − a′

2a
.

Then we have

Φ1 =
(

ϕ1 0
0 ϕ1

)
, R1 =

(
0 r1

r1 0

)
.

Let t0 ∈ [0, t), and define Ξ1 = Ξ1(t0, t, ξ) by

Ξ1(t0, t, ξ) =

exp
(∫ t

t0
ϕ1(τ, ξ)dτ

)
0

0 exp
(∫ t

t0
ϕ1(τ, ξ)dτ

)
=

√
a(t)
a(t0)

exp
(
i
∫ t

t0
ϕ1ℑ(τ, ξ)dτ

)
0

0 exp
(
−i
∫ t

t0
ϕ1ℑ(τ, ξ)dτ

) ,

where ϕ1ℑ = ℑ{ϕ1}. We also denote ϕ1ℜ = ℜ{ϕ1}. Then we have

∂tY1 = R̃1Y1, Y1 = Ξ−1
1 V1, R̃1 = Ξ−1

1 R1Ξ1. (3.24)

Here we note that Ξ1 and Ξ−1
1 are uniformly bounded from R2 to R2 in [t0, t] × R. Hence we have

|Y1(t, ξ)|2 ≃ |V1(t, ξ)|2 ≃ E(t, ξ) and ∥R̃1∥ ≃ ∥R1∥. (3.25)

Therefore, we have

∂t|Y1|2 =2ℜ (∂tY1, Y1)C2 = 2ℜ (∂tY1, Y1)C2 ≤ C|r1||Y1|.

Consequently, if r1 ∈ L1((t0, t)), then we obtain

E(t, ξ) ≃ E(t0, ξ). (3.26)

The consideration above can be applied to conclude the following proposition without any difficulties:
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Proposition 3.2. Let 0 ≤ t0 < T and Ω ⊂ Rξ, where T = ∞ is admissible. Let us consider the following
first order system:

∂tV = AV, A(t, ξ) =
(

ϕ+(t, ξ) r+(t, ξ)
r−(t, ξ) ϕ−(t, ξ)

)
(3.27)

in [t0, T ) × Ω. If there exists a positive constant C such that

sup
t>t0,ξ∈Ω

{∣∣∣∣∫ t

t0

ϕℜ±(τ, ξ)dτ

∣∣∣∣} < C, (3.28)

and

sup
ξ∈Ω

{∫ T

t0

|r±(τ, ξ)|dτ

}
< ∞, (3.29)

then we have
|V (s, ξ)| ≃ |V (t, ξ)| (3.30)

uniformly in s, t ∈ [t0, T ) and ξ ∈ Ω.

Exercise 3.1. Prove Proposition 3.2.

A typical example of a(t) from a conclusion of Proposition 3.2 for (3.22) is the following:

a(t) = 2 + cos
(
(1 + t)1−β

)
, β > 1.

However, it requires to be β > 1 for the condition (3.29), and this is not an interesting case. r1 describes
the order of the oscillating speed of a(t), and faster oscillation, that is, smaller β, will give a worse
influence to the stability of the energy. From now on we consider the following example, which is a limit
case as β → 1:

a(t) = 2 + cos (log(1 + t)) .

We see that a′(t) ̸∈ L1((0,∞)), hence (3.21) is no really clear.

3.4 C2 property of the coefficient for wave type equations

Let us consider the wave type equation (3.17). Then the following theorem can be proved:

Theorem 3.1 ([16]). Let a(t) ∈ C2([0,∞)) satisfy 0 < a0 ≤ a(t) ≤ a1 and∣∣∣a(k)(t)
∣∣∣ ≤ Ck(1 + t)−k (k = 1, 2), (3.31)

then (3.21) is established.

Firstly, we consider the energy estimate in low frequency part. Let a∞ be a positive constant. We
define the energy E∞(t, ξ) by

E∞(t, ξ) =
1
2
(
a2
∞ξ2|v(t, ξ)|2 + |vt(t, ξ)|2

)
. (3.32)

Then we have

∂tE∞(t, ξ) =
(
a2
∞ − a(t)2

)
ξ2ℜ{vvt} ≤

∣∣a2
∞ − a(t)2

∣∣ |ξ|
a∞

E∞(t, ξ) ≤ C|ξ|E∞(t, ξ).

It follows that
E∞(t, ξ) ≤ exp (C(1 + t)|ξ|) E∞(0, ξ). (3.33)
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Here we note that E∞(t, ξ) ≃ E(t, ξ) uniformly in the phase space {(t, ξ) ∈ [0,∞) × R}. This estimate
is too rough if we need the energy estimate in the whole space. But the estimate (3.21) is true in the
following restricted aria; we shall denote this aria by ZΨ:

ZΨ = {(t, ξ) ; (1 + t)|ξ| ≤ N} , (3.34)

where N is a positive constant. Indeed, N is possible to be chosen any large size, and we will suppose
that N is large enough. Consequently, we must consider only in the following zone; we shall denote this
aria by ZH :

ZH = {(t, ξ) ; (1 + t)|ξ| ≥ N} . (3.35)

Here we denote the curve, which separates ZΨ and ZH by tξ. Only the difference from the constant
coefficient case is whether B1 = 0 or not. If we don’t separate the phase space, one cannot compare the
order of Λ1 and B1. However, in ZH we see that Λ1 is dominant. Indeed, we see that

∥B1∥ = |r1(t, ξ)| ≤ C(1 + t)−1 ≤ CN−1|ξ| ≃ a(t)|ξ| = ∥Λ1∥.

Let us introduce the following symbol classes in order to discuss the order of the coefficients system-
atically. Let m be a non-negative integers, k and l be integers. The symbol class S(m){k, l} is the class
of functions f(t, ξ) which satisfy∣∣∣∂j

t f(t, ξ)
∣∣∣ ≤ Cj |ξ|k(1 + t)−l−j (j = 0, · · · ,m) in (t, ξ) ∈ ZH .

Indeed, we see that ∥Λ1∥ = a(t)|ξ| ∈ S(2){1, 0}, ∥B1∥ = ∥R1∥ = |r1| ∈ S(1){0, 1}. For the symbol classes
tha following properties are valid:

(i) Let k1 + l1 = k2 + l2. If f1 ∈ S(m1){k1, l1} and f2 ∈ S(m2){k2, l2}, then we have f1 +f2 ∈ S(m){k, l},
where m = min{m1,m2}, k = max{k1, k2} and l = min{l1, l2}.

(ii) If f1 ∈ S(m1){k1, l1} and f2 ∈ S(m2){k2, l2}, then we have f1f2 ∈ S(min{m1,m2}){k1 + k2, l1 + l2}.

(iii) If f ∈ S(m){k, l}, then ∂tf ∈ S(m−1){k, l + 1}.

(iv) If f ∈ S(m){k, l}, then f ∈ S(m){k + 1, l − 1}. Moreover, if f ∈ S(m){−k, k} with k > 0, then we
have |f | ≪ 1 since N large.

(v) If f(t, ξ) ∈ S(0){−1, 2}, then we have
∫ t

tξ
|f(τ, ξ)|dτ is uniformly bounded in ZH .

Thus the principal part of A1 is ϕ1ℑ ∈ S(2){1, 0}, which is the imaginary part of the diagonal entry; on
the other hand, ϕ1ℜ, r1 ∈ S(1){0, 1} are subprincipal part. However, r1 ∈ S(1){0, 1} is not enough small
order to conclude (3.21).

Remark 3.1. We distinguish by the following three levels for the influence of the symbols in A:

• ϕℑ±: non influence to the energy estimate;

• ϕℜ±: influence as the amplitude of the energy after (Riemann) integration.

• r±: cannot be derived any properties even if the real part and the imaginary part are separated.
Consequently, we can observe as the order of the amplitude of the energy after L1 type integration.

Therefore, some diagonalization steps of A are very important to derive precise estimates for the energy.

Let us carry out the next step of diagonalization procedure to A1. The eigenvalues λ1± of A1 and
their corresponding eigenvectors (1, θ1+)T , (θ1−, 1)T are given by

λ1± =
2ϕ1ℜ ± i

√
|ϕ1ℑ|2 − 4|r1|2
2

,
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and

θ1+ =
λ1+ − ϕ1

r1
, θ1− =

λ1− − ϕ1

r1
.

Hence we have

Θ−1
1 A1Θ1 =

(
λ1+ 0
0 λ1−

)
, Θ1 =

(
1 θ1−

θ1+ 1

)
.

Here we introduce the following lemma:

Lemma 3.1. We have the followings:

(i) λ1 = λ1+ = λ1−, hence θ1 = θ1+ = θ1−.

(ii) λ1 − ϕ1 ∈ S(1){−1, 2} and θ1 ∈ S(1){−1, 1}, it follows that Θ1 is invertible in ZH .

The proof of this lemma will be discussed later as a special case of general second order model.
If Θ1 is independent of t, then we immediately have (3.21) by using this lemma. However, ∂t and Θ1

is not commutative, hence (3.22) cannot be a diagonal system by this diagonalization procedure. Indeed,
we have

Θ−1
1 ∂tΘ1 =

1
1 − |θ1|2

(
1 −θ1

−θ1 1

)(
0 θ1

′

θ′1 0

)
=

(
− θ1θ′

1
1−|θ1|2

θ1
′

1−|θ1|2
θ′
1

1−|θ1|2 − θ1θ1
′

1−|θ1|2

)
.

If we denote

r2 =
θ1

′

1 − |θ1|2
, ϕ2 = λ1 −

θ1θ
′
1

1 − |θ1|2
,

then we have

∂tV2 = (Φ2 + R2)V2, V2 = Θ−1
1 V1, Φ2 =

(
ϕ2 0
0 ϕ2

)
, R2 =

(
0 r2

r2 0

)
. (3.36)

Here we note the following facts:

Lemma 3.2. (i) Θ1 and Θ−1
1 are bounded from C2 to C2 uniformly in ZH .

(ii) ϕ2ℜ − ϕ1ℜ ∈ S(0){−2, 3} ⊂ S(0){−1, 2} and r2 ∈ S(0){−1, 2}. It follows that

|ϕ2ℜ − ϕ1ℜ| ≤ C|ξ|−1(1 + t)−2 and |r2| ≤ C|ξ|−1(1 + t)−2. (3.37)

Hence we can apply Proposition 3.2 in ZH for A = Φ2 + R2.

By this lemma conclude the proof of Theorem 3.1.

3.5 C2 property of the coefficient for general hyperbolic equations

Let t0 ≥ 0 be a fixed initial time. We consider the following Cauchy problem of a homogeneous hyperbolic
equation with variable coefficients:{(

∂2
t + 2b(t)∂t∂x + a(t)2∂2

x

)
u = 0, (t, x) ∈ (0,∞) × R,

u(t0, x) = u0(x), ut(t0, x) = u1(x), x ∈ R.
(3.38)

By partial Fourier transformation the equation is rewritten to the following problem:{(
∂2

t + 2ib(t)ξ + a(t)2ξ2
)
v = 0, (t, ξ) ∈ (t0,∞) × R,

v(t0, ξ) = v0(ξ), vt(t0, ξ) = v1(ξ), ξ ∈ R,
(3.39)

where a(t), b(t) ∈ C2([t0,∞)) and 0 < c0 =
√

a(t)2 + b(t)2 =: c(t) ≤ c1.
Our next problem is to derive the same property as Theorem 3.1. It may be a natural expectation,

but it is not true in general. Indeed we have the following theorem:
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Theorem 3.2. If a(t) and b(t) satisfy∣∣∣a(k)(t)
∣∣∣+ ∣∣∣b(k)(t)

∣∣∣ ≤ Ck(1 + t)−k (k = 1, 2), (3.40)

and

sup
t>0

{∣∣∣∣∣
∫ t

0

b′(τ)√
a(τ)2 + b(τ)2

dτ

∣∣∣∣∣
}

< ∞, (3.41)

then the following energy estimate is valid uniformly with respect to (t, ξ) ∈ [t0,∞) × R:

E(t, ξ) ≃ E(t0, ξ). (3.42)

Here the assumption (3.41) is crucial for the estimate (3.42). Indeed we also have the following
theorem:

Theorem 3.3. Let a(t) and b(t) satisfy (3.40). If there exist a positive constant C0 and a sequence of
intervals Ij = [sj , tj ] ⊂ [0,∞) (j = 1, 2, · · · ) such that

lim
j→∞

∫
Ij

b′(τ)√
a(τ)2 + b(τ)2

dτ = ∞, (3.43)

and

inf
sj<s<t<tj

{∫ t

s

b′(τ)√
a(τ)2 + b(τ)2

dτ

}
≥ −C0, (3.44)

then there exists initial data of (3.39) at t0 = sj such that

E(sj , ξ) ≤ 1 and lim
j→∞

E(tj , ξ) = ∞. (3.45)

Remark 3.2. Theorem 3.3 is a special case in the result of [12].

Remark 3.3. Theorem 3.2 and Theorem 3.3 are considered from a point of view for the L2 well-posedness
for non-Lipschitz coefficients in [3], [9] (for weakly hyperbolic models in [11]), and [7].

From now on we shall prove Theorem 3.2 under too precise consideration, which is not necessary if
one only prove it by C2 property of the coefficients. However, we will discuss not only C2 but also Cm

property of the coefficients, and then our precise consideration will be necessary.

Proof of Theorem 3.2. In ZΨ we have

∂tE∞(t, ξ) =
(
a2
∞ − a(t)2

)
ξ2ℜ{vvt} ≤ C|ξ|E∞(t, ξ),

it follows that E∞(t, ξ) ≤ CE∞(0, ξ) in ZΨ.
In ZH let us start from the following system:

∂tV1 = (Φ1 + R1)V1, V1 =
(

vt + iξ(b − c)v
vt + iξ(b + c)v

)
, (3.46)

where

ϕ1± = −iξ(b ± c) ∓ b′

2c
+

c′

2c
, r1± = ± b′

2c
− c′

2c
. (3.47)

The eigenvalues λ1± of Φ1 + R1, and their corresponding eigenvectors (1, θ1+)T , (θ1−, 1)T are given by

λ1± =
ϕ1+ + ϕ1− ±

√
(ϕ1+ − ϕ1−)2 + 4r1+r1−

2
, θ1± =

λ1± − ϕ1±

r1±
.

Then we have the following lemma:

Lemma 3.3. 1
c ∈ S(2){0, 0} and θ± ∈ S(1){−1, 1}. It follows that Θ1 is invertible in ZH .

17



Proof. We observe that

r1± = ± b′

2c
− c′

2c
∈ S(1){0, 1}, 1

ϕ1+ − ϕ1−
=

1
−2iξc − b′

c

∈ S(1){−1, 0}.

Indeed, noting b′

c ∈ S(1){0, 1}, we see that∣∣∣∣−2iξc − b′

c

∣∣∣∣ ≥ 2c|ξ| − |b′|
c

≥ 2c|ξ| − C(1 + t)−1 ≥ c|ξ|.

Hence we have 4r1+r1−
(ϕ1+−ϕ1−)2 ∈ S(1){−2, 2}. By the approximation

√
1 + δ = 1 +

1
2
δ + q(δ)δ2, q(δ) = O(1),

we have the following representations:

λ1± =
ϕ1+ + ϕ1−

2
± ϕ1+ − ϕ1−

2

√
1 +

4r1+r1−

(ϕ1+ − ϕ1−)2

=
ϕ1+ + ϕ1−

2
± ϕ1+ − ϕ1−

2

(
1 +

2r1+r1−

(ϕ1+ − ϕ1−)2
+

2q0r
2
1+r2

1−

(ϕ1+ − ϕ1−)4

)

=ϕ1± ±

(
r1+r1−

ϕ1+ − ϕ1−
+

q0r
2
1+r2

1−

(ϕ1+ − ϕ1−)3

)
,

and

θ1± =
−ϕ1± + λ1±

r1±
= ±

(
r1∓

ϕ1+ − ϕ1−
+

q0r1+r1−r1∓

(ϕ1+ − ϕ1−)3

)
= ±r1∓

(
1

ϕ1+ − ϕ1−
+

q0r1+r1−

(ϕ1+ − ϕ1−)3

)
,

where q0 ∈ S(1){0, 0} is represented by

q0 =
∞∑

j=0

αj

(
r1+r1−

(ϕ1+ − ϕ1−)2

)j

with real sequence {αj} satisfying
∑∞

j=0 |αl| < ∞. Therefore, we have θ1± ∈ S(1){−1, 1}.

By the diagonalizer Θ1 of Φ1 + R1, which is bounded from C2 to C2 in ZH , we have

∂tV2 = (Φ2 + R2)V2, V2 = Θ−1
1 V1, Φ2 =

(
ϕ2+ 0
0 ϕ2−

)
, R2 =

(
0 r2+

r2− 0

)
, (3.48)

where

r2± = −
θ′1∓

1 − θ1+θ1−
∈ S(0){−1, 2},

and

ϕ2± = λ1± +
θ1∓θ′1±

1 − θ1+θ1−
= ϕ1± ±

(
r1+r1−

ϕ1+ − ϕ1−
+

q0r
2
1+r2

1−

(ϕ1+ − ϕ1−)3

)
+

θ1∓θ′1±
1 − θ1+θ1−

.
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Here we remark that

ℜ
{

r1+r1−

ϕ1+ − ϕ1−

}
= −

(
b′

2c
− c′

2c

)(
b′

2c
+

c′

2c

)
ℜ

{
1

−2iξc − b′

c

}

= − 1
2ξc

(
b′

2c
− c′

2c

)(
b′

2c
+

c′

2c

)
ℜ

{
i

1 − ib′

2ξc2

}

= − 1
2ξc

(
b′

2c
− c′

2c

)(
b′

2c
+

c′

2c

)
ℜ

{
i − b′

2ξc2
− i
(

b′

2ξc2

)2

+
(

b′

2ξc2

)3

+ · · ·

}

= − 1
2ξc

(
b′

2c
− c′

2c

)(
b′

2c
+

c′

2c

)(
− b′

2ξc2
+
(

b′

2ξc2

)3

+ · · ·

)
∈ S(1){−2, 3}.

It follows that

ϕ2ℜ± = ∓ b′

2c
+

c′

2c
+ q1±, q1± ∈ S(0){−2, 3}.

Therefore, we can apply Proposition 3.2 in ZH since the condition (3.41) is satisfied. Thus we conclude
the proof of Theorem 3.2.

3.6 Cm property of the coefficient for wave type equations

In this section we discuss about some benefit from further smoothness of the coefficients.
Firstly we introduce a result that (3.20) is not valid.

Theorem 3.4 ([16]). Let α > 1 and a(t) = 2+cos ((log(1 + t))α). Then (3.20) does not holds in general.

The assumption in Theorem 3.1 for (3.20) is∣∣∣a(k)(t)
∣∣∣ ≤ Ck(1 + t)−k (k = 1, 2).

On the other hand, Theorem 3.4 implies that for any α > 1 there exists a(t) satisfying∣∣∣a(k)(t)
∣∣∣ ≤ Ck

(
(1 + t)−1 (log(e + t))α−1

)−k

(k = 1, 2),

such that (3.20) does not hold. Thus the assumption (3.31) cannot be improved anymore even if a(t) is
smoother. Actually, if a(t) ∈ Cm for m ≥ 3, and satisfy some suitable assumptions, for instance∣∣∣a(k)(t)

∣∣∣ ≤ Ck(1 + t)−k (k = 1, · · · ,m),

then we can carry out further steps of diagonalization procedure. Consequently, we come to the following
equation:

∂tVm = (Φm + Rm)Vm, Φm =
(

ϕm+ 0
0 ϕm−

)
, Rm =

(
0 rm+

rm− 0

)
, (3.49)

where it will be that rm± ∈ S(0){−m + 1,m}. However, the property rm± ∈ S(0){−m + 1,m} does
not bring any benefit than the one from r2 ∈ S(m−2){−1, 2}. On the other hand, it is also true that
order of the anti-diagonal entries are smaller in consequence of further steps of diagonalization procedure
in high frequency part. If one wants to derive a benefit from the better estimate in high frequency
part conclude from Cm property of the coefficients and further steps of diagonalization procedure, the
following condition, which is called the stabilization property is effective:∫ t

0

|a(τ) − a∞| dτ ≤ C(1 + t)α. (3.50)

Here α = 1 is a trivial case, hence (3.50) has a meaning only for 0 ≤ α < 1.
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If we assume (3.50), then we have the following estimate in the low frequency pat:

∂tE∞(t, ξ) =
(
a2
∞ − a(t)2

)
ξ2ℜ{vvt} ≤

∣∣a2
∞ − a(t)2

∣∣ |ξ|
a∞

E∞(t, ξ) ≤ C |a∞ − a(t)| E∞(t, ξ).

By Gronwall’s lemma and (3.50) we have

E∞(t, ξ) ≤ E∞(0, ξ) exp
(

C|ξ|
∫ t

0

|a∞ − a(τ)| dτ

)
≤ E∞(0, ξ) exp (C|ξ|(1 + t)α) .

Consequently, we have (3.21) in the following zone:

ZΨ,α = {(t, ξ) ∈ [0,∞) × R ; |ξ|(1 + t)α ≤ N} , (3.51)

where N is a positive constant. Here we remark that ZΨ ⊂ ZΨ,α, and ZΨ,α1 ⊂ ZΨ,α2 for α1 > α2.
Let m ≥ 2 and a(t) ∈ Cm([0,∞)) satisfy the following conditions, which is a generalization of (3.31):∣∣∣a(k)(t)

∣∣∣ ≤ Ck(1 + t)−βk (k = 1, · · · ,m), (3.52)

where 0 ≤ β < 1, otherwise, (3.20) has already proved as Theorem 3.1. We define ZH,α by

ZH,α = {(t, ξ) ∈ [0,∞) × R ; |ξ|(1 + t)α ≥ N} . (3.53)

Then the symbol classes in ZH,α should be introduced as follows:

f(t, ξ) ∈ S
(m)
β {k, l} ⇔

∣∣∣∂j
t f(t, ξ)

∣∣∣ ≤ Cj |ξ|k(1 + t)−l−j . (3.54)

Then the same properties of (i)-(iv) for the symbol class S(m){k, l} are valid. The property corresponding
(v) is given by

f(t, ξ) ∈ S
(0)
β {−m + 1,m}, β ≥ βm := α +

1 − α

m
⇒ sup

(t,ξ)∈ZH,α

{∫ t

tξ

|f(τ, ξ)|dτ

}
< ∞, (3.55)

where tξ is the curve which separates ZΨ,α from ZH,α defined by |ξ|(1 + tξ)α = N .

Remark 3.4. (i) If 0 ≤ α < 1, then βm = α + 1−α
m < 1.

(ii) βm is monotone decreasing and limm→∞ βm = α.

(iii) If m = 1 or α = 1, then β ≥ 1; this is the same assumption to the order of a′(t) in Theorem 3.1.
Actually, not C2 but C1,ε (ε > 0) regularity is essential to carry out our diagonalization procedure.
Indeed, for any ε > 0 we may prove the estimate (3.20) under the following assumptions:

|a′(t)| ≤ C1(1 + t)−1, sup
0<h<1

|a′(t + h) − a′(t)|
hε

≤ C1+ε(1 + t)−1−ε

by using the same argument in [10].

If we introduce the stabilization property (3.50) and the Cm property (3.52) simultaneously, we have
the following theorem, which drive a benefit of Cm regularity of the coefficient.

Theorem 3.5 ([8]). Let m ≥ 2 be an integer, α and β be real numbers satisfying 0 ≤ α, β < 1. If
a(t) ∈ Cm([0,∞)) satisfies (3.50) and (3.52) for β ≥ βm = α + 1−α

m , then (3.20) is established.

A necessity of the condition β ≥ βm for (3.20) is an interesting open problem. Incidentally, we have
a result that (3.20) is not true in the limit case β < β∞ = α as follows:

Theorem 3.6 ([8]). Let α and β satisfy 0 ≤ β < α < 1. There exists a(t) ∈ C∞([0,∞)) satisfying (3.50)
and (3.52) such that (3.20) does not hold.
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Proof of Theorem 3.5. We have already proved the energy estimate (3.21) in ZΨ,α; thus we consider the
estimate in ZH,α. Let us consider the following first order system:

∂tV1 = (Φ1 + R1)V1, Φ1 =
(

ϕ1 0
0 ϕ1

)
, R1 =

(
0 r1

r1 0

)
, (3.56)

where ϕ1 = −iξa(t) + a′(t)
2a(t) and r1 = − a′

2a . Then by (3.52) we have

ϕ1 ∈ S
(m)
β {1, 0}, r1 ∈ S

(m−1)
β {0, 1}, 1

ϕ1
∈ S

(m)
β {−1, 0}. (3.57)

Here we can define the diagonalizer Θ1 of Φ1 + R1 by

Θ1 =
(

1 θ1

θ1 1

)
, θ1 =

λ1 − ϕ1

r1
, λ1 = ϕ1ℜ + i

√
|ϕ1ℑ|2 − 4|r1|2

2
. (3.58)

Here we recall that the eigenvalues of Φ1+R1 are complex conjugate. Then we see that θ1 ∈ S
(m−1)
β {−1, 1},

and thus Θ1 is bounded from C2 to C2 and invertible uniformly in ZH,α. Denoting V2 = Θ−1
1 V1 we have

∂tV2 = (Φ2 + R2)V2, Φ2 =
(

ϕ2 0
0 ϕ2

)
, R2 =

(
0 r2

r2 0

)
, (3.59)

where

r2 =
θ1

′

1 − |θ1|2
, ϕ2 = λ1 −

θ1θ
′
1

1 − |θ1|2
.

Generally we observe the following fact:

Proposition 3.3. Let the matrix Ap have the following structure:

Ap =
(

ϕp rp

rp ϕp

)
,

λp± be the eigenvalues of Ap, and (1, θp+)T and (θp−, 1)T be the corresponding eigenvectors. If 1/ϕp ∈
S

(j)
β {−1, 0} and rp ∈ S

(j)
β {−l + 1, l} for j ≥ 1 and l ≥ 1, then we have the following properties for large

N :

(i) λp+ = λp− =: λp.

(ii) The diagonalizer of Θp of Ap is given by

Θp =
(

1 θp

θp 1

)
, θp =

λp − ϕp

rp
∈ S

(j)
β {−l, l},

hence Θp is bounded and invertible in ZH,α.

(iii) Ap+1 := Θ−1
p ApΘp − Θ−1

p (∂tΘp) has the following representation:

Ap+1 =
(

ϕp+1 rp+1

rp+1 ϕp+1

)
, rp+1 =

θp
′

1 − |θp|2
, ϕp+1 = λp −

θpθ
′
p

1 − |θp|2
. (3.60)

More precisely we have

ϕp+1 = λp − 1
2
(
log
(
1 − |θp|2

))′
+ i

ℑ{θpθ
′
p}

1 − |θp|2
. (3.61)

It follows that

ℜ{ϕp+1 − λp} = −1
2
(
log
(
1 − |θp|2

))′
. (3.62)
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(iv) rp+1 ∈ S
(j−1)
β {−l, l + 1}.

This proposition can be proved by direct computations.
By applying Proposition 3.3 to (3.59), we come to the following system:

∂tVm = (Φm + Rm) Vm, Vm = Θ−1
m−1 · · ·Θ

−1
1 V1, Φm =

(
ϕm 0
0 ϕm

)
, Rm =

(
0 rm

rm 0

)
, (3.63)

where rm ∈ S
(0)
β {−m + 1,m} and

ℜ{ϕm} = ℜ{λ1} −
1
2

m−1∑
k=1

(
log
(
1 − |θk|2

))′
=

1
2
∂t log

(
a∏m−1

k=1 (1 − |θk|2)

)
, (3.64)

it follows that ∫ t

s

ℜ{ϕm(τ, ξ)}dτ =
1
2
∂t log

(
a(t)

∏m−1
k=1

(
1 − |θk(t, ξ)|2

)
a(s)

∏m−1
k=1 (1 − |θk(s, ξ)|2)

)
.

Therefore,
∫ t

s
ℜ{ϕm(τ, ξ)}dτ is uniformly bounded in ZH,α. Consequently, we can apply Proposition 3.2

in ZH,α, and thus the proof of Theorem 3.5 is concluded.

Remark 3.5. Theorem 3.2 is generalized in [2] taking account of the Cm and the stabilization properties
of the coefficients.

3.7 Gevrey property of the coefficient for wave type equations

It may be a natural observation that further smoothness property than Cm, for instance C∞ or Gevrey
regularity of the coefficient brings some benefit.

Let introduce more precise the condition of (3.52) for a(t) ∈ C∞([0,∞)) as follows:∣∣∣a(k)(t)
∣∣∣ ≤ Ck!ν

(
(1 + t)α (log(e + t))δ

)−k

(k = 1, 2, · · · ). (3.65)

If (3.52) holds for β > α, then Theorem 3.5 is applicable. Hence it should be that β = α, and logarithmic
order decay is introduced in (3.65). Then we the following theorem:

Theorem 3.7 (Hirosawa ’10). Let α ∈ [0, 1), δ ≥ 0 and ν ≥ 1. If a(t) ∈ C∞([0,∞)) satisfies (3.50) and
(3.65) for ν ≤ δ, then (3.20) is valid.
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