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（Abstract） 

With the rapid development of social media, the nature of the data it generates has evolved from single-text 

to multimodal formats. This evolution has given rise to the multimodal sentiment analysis task, which aims to 

comprehensively analyze information from multiple modalities, such as text and images. However, the inherent 

heterogeneity of multimodal data presents significant challenges. To overcome these challenges, we propose a 

multimodal data fusion model that integrates momentum distillation and contrastive learning to enhance the 

alignment and fusion of these heterogeneous modalities. Our approach first utilizes two single-modal encoders 

to obtain representations for text and image inputs, which are then integrated through attention-based modal 

fusion. These fused representations are subsequently fed into a momentum distillation model to construct 

negative samples for image-text matching and image-text contrast training, thereby facilitating modality 

alignment and improving the learning of correlations between different modalities. Finally, experiments 

conducted on two public datasets (“MVSA-single” and “MVSA-multi”) demonstrate the superiority of our 

model in multimodal sentiment analysis, highlighting the contributions of the proposed modules in enhancing 

analysis effectiveness. 

Keywords: multimodal sentiment analysis, heterogeneity of multimodal data, momentum distillation, 

contrastive learning 

1. Introducation 

The rapid development of social media and mobile 

communication devices over the past few decades has 

dramatically changed the way people express their emotions. 

With the development of increasingly ubiquitous networks 

and more versatile mobile devices, people are increasingly 

using a combination of images and text to express more 

complex and rich emotions. In this new form of expression, 

it is often difficult to accurately capture people's emotional 

tendencies only by analyzing the text, because the non-

verbal information contained in images plays a crucial role 

in emotional expression. Therefore, a multimodal data 

processing method is needed for sentiment analysis.  

Multimodal data encompasses various types of 

information, including visual, auditory, speech, and text data. 

For instance, within a video segment, there could be visual 

details regarding color, size, and shape, along with audio 

components like BGM. To better capture the author's 

emotions, a comprehensive consideration and analysis of the 

information embedded in multimodal data is necessary. 

Multimodal Sentiment Analysis (MSA) is leveraging 

information from multiple modalities to infer or understand 

the emotional state [1]. This approach broadens the scope of 

traditional sentiment analysis, enhancing its adaptability to 

the diverse sensory inputs encountered in the real world. 

In the early research on MSA, methods such as early 

fusion, late fusion, and hybrid fusion were commonly 

employed [2]. However, in recent years, with the 

advancement of deep learning, the trend in research leans 

towards utilizing deep learning models for MSA. The reason 

lies in the fact that deep learning models are more flexible, 
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adaptive, and capable of learning more complex inter-modal 

relationships from the data. Researchers have introduced 

various MSA techniques, including attention mechanisms, 

tensor fusion [3], contrastive learning [4], etc., aiming to 

further enhance performance and efficiency. Although these 

methods have shown success in modal fusion tasks, most of 

the work is based on modal fusion methods without 

emphasizing the heterogeneity between modalities. 

Heterogeneity is reflected in the fact that data in different 

modalities are different, e. g., the “text data” is a discrete 

symbolic representation, while the “images data” are 

continuous pixel representations. Due to the differences in 

their representations, the information in different modalities 

exists in different feature spaces, and the dimensionality, 

distribution, and semantics of the data are also different. The 

semantics of different modal data are vastly different, 

making it difficult to accurately capture the complex 

relationships between modalities during feature fusion. 

Effectively aligning and fusing the information of these 

heterogeneous modalities to obtain more accurate sentiment 

understanding is the key to realizing efficient multimodal 

analysis. 

To address this issue, we propose a method using 

Momentum Distillation for Contrastive Learning (MDCL). 

In the feature extraction stage, this method transforms 

multimodal data into features of the same shape and employs 

a contrastive loss function for alignment, thereby improving 

the heterogeneity between modalities. The application of 

contrastive learning in MSA enables the model to better 

comprehend and align the similarities and differences among 

different modalities. Simultaneously, momentum distillation 

provides an effective knowledge transfer mechanism for the 

model. By using pseudo targets generated by the delayed 

update distillation model for training, the performance of the 

model is improved when processing heterogeneous modal 

data. Finally, by training and testing the MVSA-S and 

MVSA-M dataset, the method we proposed achieves better 

performance compared to several baseline models in all two 

datasets. 

2. Related Work 

2.1 Multimodal Sentiment analysis 

The MSA task was first proposed by Morency et al. [5], 

early MSA focused on modality fusion methods, for pre-

fusion, Convolutional Neural Networks (CNNs)[6], Long 

short-term memory(LSTM)[7] or Deep Neural Networks 

(DNNs) are commonly used to extract the unimodal features 

for splicing and then obtaining the sentiment polarity 

through the fully connected layer. As well as tensor-based 

fusion methods to fuse different modalities. For modal 

fusion based on attention mechanism, YANG et al. [8] 

proposed a new multi-modal sentiment analysis model, 

which introduced CNN and CBAM attention mechanisms 

after concatenating text features and image features, and 

Zadeh et al. [3] designed a tensor fusion network (TFN) that 

can gradually fuse multimodal information. For late fusion, 

Jiang et al. [9] proposed a fine-grained attention mechanism 

to interactively learn cross-modal fusion representations of 

visual and textual information. Due to the lack of systematic 

research on the degree of cross-modal feature matching at 

the affective-semantic level, Chen et al. [10] proposed a joint 

SA multimodal adaptive approach based on graphic 

relevance. Tasi et al. [11] proposed a directed paired cross-

modal attention approach that focuses on the interactions 

between multimodal sequences. 

2.2 Contrastive Learning 

Contrastive learning is a newly emerging self-

supervised learning method. It learns a good representation 

of the data by comparing positive and negative sample pairs, 

and the basic concept involves bringing anchor points and 

positive samples closer together while pushing away anchor 

points and negative samples. Contrastive learning was 

introduced to the MSA task to reduce the modal gap in MSA. 

Mai et al. [12] proposed a hybrid contrastive learning 

framework, which enables the model to fully explore cross-

modal interactions, preserve interclass relationships, and 

reduce inter-modal gaps through within/between-modal 

contrastive learning and semi-contrastive learning. Similarly, 

Lin et al. [13] proposed a novel hierarchical graph contrast 

learning framework that first constructs unimodal graphs and 

then integrates these unimodal graphs to form multimodal 

graphs for both intramodal and intermodal graph contrast 

learning. Zolfaghari et al. [14] considered intramodal 

similarity to efficiently avoid mapping the same content to 

multiple points in the embedding space, solved previous loss 

function limitations, and defined the set of highly correlated 

samples to exclude them from negative samples to avoid 

false negative samples. 
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2.3 Momentum Distillation 

Knowledge Distillation (KD) is a model compression 

technique that works by transferring knowledge from a large, 

complex model (often called a teacher model) to a smaller, 

more easily deployable model (called a student model). 

Knowledge distillation is categorized as offline distillation, 

online distillation, and self-distillation. Offline distillation 

trains a high-performance teacher model and then uses that 

teacher model to guide the training process of the student 

model. Online distillation is a distillation method that takes 

place in real time during model training. It usually involves 

the simultaneous training of multiple student models or a 

student model and a teacher model, whereas self-distillation, 

which we have chosen to use in this paper, is where the 

model refines and optimizes itself without an external 

teacher model, and where the self-distillation uses some 

form of its own model as a teacher to instruct an alternative 

version of the model. This feature makes self-distillation 

much less computationally expensive. The concept of 

knowledge distillation was first introduced in [15] to transfer 

knowledge by minimizing the Kullback-Leibler divergence 

(KL) between the predictive logics of teachers and students. 

Subsequently, various KD methods [16, 17] were proposed 

based on [15] and further extended to distillation between 

intermediate features [18, 19]. 

3. Construction of MDCL model 

In Section 2, we introduced the key technologies and the 

rationale behind their selection. In this paper, we build our 

models based on the benefits and effects of these three 

approaches. First, we introduce an attention mechanism to 

more effectively capture key features across modals and 

contextual information within modals. Next, we apply 

contrastive learning to narrow the positive sample features 

while pushing away the negative sample features, thereby 

reducing heterogeneity among the modals. Finally, we 

incorporate momentum distillation, leveraging the teacher-

student alignment strategy to enhance the stability and 

consistency of the multimodal feature representation. By 

integrating these three approaches, we successfully improve 

the robustness, generalization, and accuracy of emotion 

recognition. This section discusses the structure and loss 

function design of the MDCL model. 

3.1 Model architecture 

In order to address the heterogeneity between modalities 

through modal alignment during the training phase, we 

Figure 1: The framework of the MDCL model for multimodal sentiment analysis. The left side of the image are the text encoding process and the image 

encoding process. The fused multimodal data will pass through the classifier in the upper left corner to obtain emotion classification output. The lower 

half of the right part of the image is the ITA-Loss module, and the upper half is the ITM-Loss module.  
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propose the MDCL model for MSA, which is shown in Fig. 

1. Firstly, two single-modal encoders are used to obtain 

representations for text and images, integrating these single-

modal representations through attention-based modal fusion. 

Next, these integrated representations serve as inputs for the 

Momentum Distillation model, facilitating modal alignment 

and image-text matching. By constructing contrastive losses 

using pseudo-targets generated by the distillation model, we 

then proceed to learn and minimize the distance between text 

and image representations extracted from single-modal 

encoders, thereby achieving semantic alignment between 

modalities. Finally, following a similar approach, negative 

samples are constructed for image-text matching training, 

further enhancing the learning of correlations between 

different modal data. 

Previous studies have shown that linguistic modalities 

contribute more information to multimodality compared to 

images, so we use a more complex text model text T is 

encoded by the text encoder to obtain representation �� , 

which is shown as Equation 1,  and image I is encoded by 

the image encoder (Resnet152 used) to obtain representation 

��, which is shown as Equation 2. 

�� = ����	
� 	1� 

�� = �
��

	�� 	2� 

The models we used are respectively pre-trained on 

large-scale textual and visual datasets. Simple feature fusion 

is ineffective for sentiment analysis because the task of 

sentiment analysis requires a model with the ability to extract 

high-level semantic information about a graphic. Image 

feature �� , is spliced with text feature ��  in sequence 

dimension to obtain ��� . We utilize the BERT layer with 

attention mechanism for inter-modal fusion, as shown in 

Equation 3. 

Attention	�, �, �� = softmax ����
���

+ �� � 	3� 

Where Q, K, V are obtained from the input features 

���  by different linear transformations, ��  is the 

dimension of the K, M is the attention mask. The attention 

mask M consists of two parts. One part is obtained by the 

text encoder BERT, which identifies the effective part of the 

text sequence, while the image attention mask is artificially 

set to an all '1' vector, indicating that the image is considered 

all parts, the attention mask M is then converted and scaled 

as Equation 4 to convert it into a form suitable for the 

attention mechanism. 

� = 	1. 0 − �� ∗ 	−10000� 	4� 

For the fused multimodal representation, we use two loss 

functions for modal alignment and modal matching. 

3.2 Loss of alignment objective 

Inspired by [20], we use momentum model to generate 

image, text features similar to the main model, and in this 

way implement several features mentioned below. The 

momentum model performs parameter updates by delayed 

replication of the parameters of the main model, rather than 

by gradient descent. This makes its feature representation 

smoother, more stable, and occupies less computational 

resources. The update of the momentum model follows the 

following Equation 5. 

#$ = % ⋅ #$ + 	1 − %� ⋅ # 	5� 

where #$ is a parameter of the momentum distillation 

model, # is a parameter of the main model, and % is the 

momentum coefficient. As shown in the lower right part of 

Fig. 1, the momentum model maintains two feature queues 

storing historically updated momentum features �$())  and 

*$()) . Following [32] we define the hybrid target similarity 

matrix in the following form Equations 6 and 7. 

+,(-./,012, = % × �45
678	+	*, �$())�� + 	1 − %� × +9:/0            	6� 

+,(-./,0,21 = % × �45
678<+	�, *$())�= + 	1 − %� × +9:/0        	7� 

The image-to-text contrastive loss is defined below 

Equation 8, and text-to-image contrastive loss is defined 

below Equation 9, the above two loss functions achieve the 

function of eliminating heterogeneity between text and 

image by narrowing the distance between text samples 

(image samples), and generated image pseudo positive 

samples (generated text pseudo positive sample). Also, the 

final image-text contrastive loss is Equation 10. The content 

of this section is in the lower right side of Fig. 1. 

?4��12, = − 1
� @ log � exp<+	*, �$())�=

∑ exp<+	*, �$())�=� ∗ +,(-./,0          12, 	8� 

?4��,21 = − 1
� @ log � exp<+	�, *$())�=

∑ exp<+	�, *$())�=� ∗ +,(-./,0          ,21 	9� 

?4��1,( = 1
2	?4��12, + ?4��,21� 	10� 
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3.3 Loss of matching objective 

The image-text matching loss (ITM-loss) learns whether 

the image and text are matched or not, it will minimize the 

distance between the text and its matching image while 

maximizing the distance between the text and its 

mismatched image. For the selection of negative samples, 

we first use the previous hybrid target similarity matrix, 

which is calculated according to the following Equations 11 

and 12 to get its probability distribution matrix. By setting 

the diagonal elements of the probability distribution matrix 

to '0' to exclude the influence of positive pairs of samples, so 

as to select the negative samples corresponding to the text or 

image. 

J<*1K�L= = exp<+1L=
∑  :�NO exp<+�L= 	11� 

J<�LK*1= = exp<+1L=
∑  $�NO exp	+1�� 	12� 

The image-text matching loss is computed by the cross-

entropy loss function such as Equation 13, where 

P1  represents the ground truth label, PQ1  is the matching 

probability calculated by the model. For positive samples, 

we want this probability to be close to 1; for negative 

samples, we want this probability to be close to 0. By 

optimizing ITM-loss, the model learns how to fuse features 

from different modalities more efficiently, thus improving 

the understanding of the integrated information. The content 

of this section is on the upper right side of Fig. 1. 

?4��1,$ = − 1
� @  

R

1NO
SP1 ⋅ log	PQ1� + 	1 − P1� ⋅ log	1 − PQ1�T    	13� 

Finally, the multimodal synergy loss (?4��UVW) is set as 

Equation 14, where XO, X2 are hyper-parameters for weights 

of the losses. 

?4��UVW = XO?4��1,( + X2?4��1,$ 	14� 

4. Experiments 

4.1 Dataset 

In order to test the ability of our model, we tested on two 

widely used public dataset MVSA-single and MVSA-multi. 

The MVSA dataset was collected from the social media 

platform twitter. The MVSA dataset was collected from the 

social media platform twitter. The MVSA-single dataset 

includes 4869 image-text pairs. Each image and text pair are 

annotated by one annotator, and MVSA-multi contains 19, 

600 image and text pairs. Each image and text pair are 

annotated by three annotators, and each annotator 

independently annotates the image and text. For the MVSA-

Single dataset, we delete a tweet if the image is completely 

opposite to the sentiment node of the text. And if the labels 

of the image and text do not have a neutral mode, the 

sentiment nodes of the tweet will be regarded as another 

modal sentiment graph. For example, if the image is labeled 

neutral and the text is labeled positive, then the tweet will be 

considered positive. For MVSA-multi, in addition to the 

above rules, since each tweet is annotated by three annotators, 

we set the label of each tweet to a majority vote among the 

three labels, that is, when at least two of the three annotators 

The label marked by the annotator is the final vote for the 

tweet. After being processed by the above rules, we obtained 

the MVSA-single data set of 4511 image-text pairs and the 

MVSA-multi data set of 16779 image-text pairs. The label 

statistics of the processed MVSA data set are as shown in 

Table 1. 

Table 1. Sentiment polarity distribution of MVSA dataset. 

Dataset Positive Neutral Negatives All 

MVSA-S 2683 470 1358 4511 

MVSA-M 9328 6359 1092 16779 

4.2 Implementation details 

We use the AdamW optimizer with weight decay set to 

1e-2, batch size set to 64, parameters used to update the 

momentum model set to 0.995, pseudo target queue size 

maintained by the momentum model set to 16384, dropout 

set to 0.4. We use Bert-base and resnet152 pre-training 

parameters to initialize the text and image encoders in the 

model, XO=0.1, X2=0.2. Experiments were conducted on an 

NVIDIA GeForce RTX 3090 GPU for 50 epochs of training. 

4.3 Compared Methods 

To evaluate the performance of our model, we compare 

it with the following model: 

CLIP [21]: A contrastive learning model proposed by 

OpenAI in 2021, which has achieved state-of-the-art 

performance on several NLP tasks. The results shown in 

Table 2 were obtained from [4]. ResNet-50 [22]: A pre-

trained and fine-tuned model on the image only task. 

Multiengine [23]: A semantic network used for MSA. The 

results shown in Table 2 were reimplemented in [24]. OSDA 
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[25]: An image sentiment analysis model based on multiple 

views. MultiSentiNet-M [23]: A visual-feature-guided 

LSTM with extract words that were important to text 

sentiment and then aggregated the text representation, image 

object features and scene features. FENet-BERT [24]: A 

fusion extraction network model for MSA. The results in 

Table 2 were reimplemented in [26]. Se-MLNN(CI)[26]: A 

network combines several visual features with contextual 

text features to predict the overall sentiment accurately. 

CNN-Multi [27]: uses two independent CNN architectures 

to learn the features of text and images and utilizes them as 

the input of another CNN for MSA. CNN-T [28]: A text 

sentiment analysis model based on CNN. BiLSTM-T [29]: 

A text sentiment analysis model based on a BiLSTM. Co-

Memory-M [30]: A model using co-memory network to 

iteratively model the interactions between visual content and 

text for MSA. MVAN-M [25]: A network use of memory 

networks that are constantly updated to obtain deep semantic 

information about text and images. ALBEF [31]: A multi-

modal pre-trained model that achieved state-of-the-art 

results on several multimodal tasks. 

4.4 Results and analysis 

The experimental results of the baseline approach with 

our model are shown in the Table 2, the results show that our 

model has the best results or has shown informative 

performance on the MVSA-S and MVSA-M datasets, 

according to the comparison of the results of the unimodal 

model and the multimodal model it can be found that the 

multimodal model generally outperforms the unimodal 

model on the MSA task, and that the second modality implies 

affective information which is indeed beneficial for the 

second modality contains emotional information that is 

indeed beneficial for the model to learn more comprehensive 

emotional information. Comparing the results of the 

unimodal model between the text and picture modalities, the 

text model generally shows better results than the picture 

modality. Thus, it can be intuitively demonstrated that text 

modality plays a more important role than image modality 

for the sentiment analysis task, which is contrary to the 

experience of the multimodal pre-training task[32], and we 

believe that this may be related to the way people express 

their emotions on social media, where people more often use 

text to express themselves in response to images, and thus 

text aggregates more sentiment information. The models that 

underwent modality alignment were better than those that 

did not, confirming that modality alignment reduces 

semantic differences between modalities and mitigates 

heterogeneity between modalities. Experimental 

performance observations on pre-trained models that have 

not been adjusted for the sentiment analysis task (e. g., 

ALBEF) yield that the performance of such pre-trained 

models is comparable to that of unimodal models (e. g., 

BERT) because they capture only semantic multimodal 

information while ignoring sentiment signals.  

4.5 Ablation studies 

We conducted ablation studies on the MVSA-S and 

MVSA-M datasets to illustrate the role of ITA-loss versus 

ITM-loss in our model. We removed ITM-loss and ITA-loss 

separately as well as the performance after both were 

removed. The results of the ablation study are presented in 

Table 3. ALL means that the model has all modules including, 

-ITA-ITM means model without ITA-loss module and ITM-

loss module, -ITA means model without ITA-loss module, -

ITM means model without ITM-loss module. The ablation 

study shows that the full version of MDCL achieves the best 

performance, which is marked in bold in Table3. 

Table 2. The metrics of accuracy and F1-score on two datasets. 
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We first removed ITA-loss and retained ITM-loss. The 

results indicate that the alignment of intermodal features 

facilitates the model's ability to integrate cross-modal 

features, confirming the critical role of ITA-loss in 

improving the model's deep feature understanding. Then we 

remove the ITM-loss and retain the ITA-loss. The results 

show that by learning for both positive and negative sample 

pairs, the model is able to accurately match and correlate the 

semantic content between images and texts. The more 

significant improvement in the results also suggests that the 

model's understanding of the high-level semantics of 

multimodal information will have a more important effect on 

the sentiment categorization task. Removing both the graph 

alignment module and the graph matching module adversely 

affects the model. This indicates that both modules are 

effective for MSA. 

Table 3. Results of ablation studies. 

Dataset Model ACC F1 

MVSA-S ALL 73. 56 70. 71 

-ITA-ITM 68. 10 66. 93 

-ITA 71. 09 68. 25 

-ITM 70. 44 69. 27 

MVSA-M ALL 70. 66 68. 27 

-ITA-ITM 68. 10 66. 93 

-ITA 67. 16 66. 23 

-ITM 66. 98 66. 02 

5. Conclusions 

In this paper, we proposed a multimodal data processing 

model that integrates momentum distillation and contrastive 

learning. This model combined the strengths of both 

techniques, leading to a more comprehensive and effective 

enhancement of the performance of deep learning models.   

Furthermore, model testing and ablation experiments were 

conducted on public datasets of MVSA-single and MVSA-

multi. The experimental results demonstrated the superiority 

of our model in multimodal sentiment analysis, highlighting 

the beneficial contributions of the introduced dual modules 

in improving the efficiency of multimodal sentiment analysis.  

As the future works, we are to: (1) Fine-tuning 

hyperparameters to optimize the performance of the 

multimodal sentiment analysis model, ensuring better 

adaptability to different datasets and scenarios; (2) Further 

research might delve into enhancing the scalability and 

efficiency of the proposed model, making it applicable to 

larger datasets and real-time applications. 
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