研究成果・発表論文

2024年
Sultana, M. S., Sakurai, C., Biswas, M. S., Szabados, L. and *Mano, J. (Januray 2024) Accumulation of reactive carbonyl species in roots as the primary cause of salt stress-induced growth retardation of *Arabidopsis thaliana. Physiologia Plantarum*, in press. *DOI: *10.1111/ppl.14198

2023年
Traiphop Phahom, Jun’ichi Mano. Integration of multiple linear regression, principal component analysis, and hierarchical cluster analysis for optimizing dried fingerroot (Boesenbergia rotunda) extraction process. Journal of Applied Research on Medicinal and Aromatic Plants, 100511

2022年
Nanaka Murakami, Saashia Fuji, Shota Yamauchi, Sakurako Hosotani, Jun’ichi Mano, Atsushi Takemiya. (2022) Reactive Carbonyl Species Inhibit Blue-Light-Dependent Activation of the Plasma Membrane H+-ATPase and Stomatal Opening. Plant Cell Physiol 63(8):1168-1176.

Most. Sharmin Sultana, Shun-ichi Yamamoto, Md. Sanaullah Biswas, Chisato Sakurai, Hayato Isoai, Jun’ichi Mano. (2022) Histidine-Containing Dipeptides Mitigate Salt Stress in Plants by Scavenging Reactive Carbonyl Species. J. Agric. Food Chem. 70, 11169–11178

真野純一(2022)植物の環境応答とレドックス制御:活性酸素と活性カルボニルの意義.山内靖雄,須藤修,和田哲夫監修「バイオスティミュラントハンドブック 植物の生理活性プロセスから資材開発、適用事例まで」pp.45-60, NTS.

真野純一(2022)植物細胞の酸化シグナルを伝える活性カルボニル種—過酸化脂質由来α,β-不飽和カルボニル化合物の作用.化学と生物.60(3): pp. 131-135.

Mano, J., Biswas, M. S., Sugimoto, K. and Murata, Y. (2022) Determination of reactive carbonyl species, which mediate ROS signals in plant cells. In Methods in Molecular Biology ‘Reactive Oxygen Species in Plants: Methods and Protocols’ (Mhamdi, A. ed.), Springer, in press

2021年
Biswas, Md. S. and Mano, J. (2021) Lipid peroxide-derived reactive carbonyl species as mediators of oxidative stress and signaling. Frontiers in Plant Science 12: 720867. doi: 10.3389/fpls.2021.720867

Nurbekova, Z., Srivastava, S., Standing, D., Kurmanbayeva, A., Bekturova, A., Soltabayeva, A., Oshanova, D., Turečková, V., Strnad, M., Biswas, Md. S., Mano, J., Sagi, M. (2021) Arabidopsis aldehyde oxidase 3, known to oxidize abscisic aldehyde to ABA, protects leaves from aldehyde toxicity. The Plant Journal, 108: 1439-1455. https://doi.org/10.1111/tpj.15521

Koschmieder, J., Wüst, F., Schaub, P., Álveraz, D., Trautmann, D., Fekete, A., Shiko, G., Rustenholz, C., Mano, J., Müller, M., Bartels, D., Hugueney, P. and Welsch, R. (March 2021) Plant apocarotenoid metabolism defense mechanisms against reactive carbonyl species and xenobiotics. Plant Physiology 185(2):331-351. doi: 10.1093/plphys/kiaa033

Sugimoto, K., Matsuoka, Y., Sakai, K., Fujiya, N., Fujii, H. and Mano, J. (2021) Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species. Food Chemistry 355: 129403. https://doi.org/10.1016/j.foodchem.2021.129403.

2020年
Biswas, Md. S., Terada, R. and Mano, J. (2020) Inactivation of carbonyl-detoxifying enzymes by H2O2 is a trigger to increase carbonyl load for initiating programmed cell death in plants. Antioxidants 9: 141.

Islam, Md. M., Ye, W., Akter F., Rhamana, M. S., Matsushim a, D., Munemasa, S., Okuma, E., Nakamura, Y., Biswas, Md. S., Mano, J., Murata, Y. (2020) Reactive carbonyl species mediate methyl jasmonate-induced stomatal closure.Plant Cell Physiol 61 (10):1788-1797.

Koschmieder, J., Wüst, F., Schaub, P., Álveraz, D., Trautmann, D., Fekete, A., Shiko, G., Rustenholz, C., Mano, J., Müller, M., Bartels, D., Hugueney, P., Welsch, R. (2020) Plant apocarotenoid metabolism defense mechanisms against reactive carbonyl species and xenobiotics. Plant Physiol. 185(2):331-351

2019年
Islam, Md. M., Ye, W., Matsushima, D., Rhaman, M. S., Munemasa, S., Okuma, E., Nakamura, Y., Biswas, Md. S., Mano, J. and Murata, Y. (February 2019) Reactive carbonyl species function as signal mediators downstream of H2O2 production and regulate [Ca2+]cyt elevation in ABA signal pathway in Arabidopsis guard cells. Plant Cell Physiol. 60: 1146-1159. doi: 10.1093/pcp/pcz031

Biswas, Md. S., Fukaki, H., Mori, , I. C., Nakahara, K. and Mano, J. (2019) Reactive oxygenspecies and reactive carbonyl species constitute a feed-forward loop in the auxin signaling for lateral root formation. Plant J. 100(3):536-548


Yalcinkaya, T., Uzilday, B., Ozgur, R., Turkan, I.,and Mano, J. (June 2019) Lipid peroxidation-derived reactive carbonylspecies (RCS): their interaction with ROS and cellular redox environmentalstresses. Environ. Exp. Bot. 165:139-149.

Mano, J., Kanameda, S., Kuramitsu, R., Matsuura, N. and Yamauchi, Y. (2019) Detoxification of reactive carbonyl species by glutathione transferase Tau isozymes. Frontiers Plant Sci. 10: 487.

Islam, Md. M., Ye, W., Matsushima, D., Rhaman, M. S., Munemasa, S., Okuma, E., Nakamura, Y., Biswas, Md. S., Mano, J. and Murata, Y. (2019) Reactive carbonyl species function as signal mediators downstream of H2O2 production and regulate [Ca2+]cyt elevation in ABA signal pathway in Arabidopsis guard cells. Plant Cell Physiol. in press.

2018年
Mano, J. and Biswas, Md. S. (2018) Analysis of reactive carbonyl species generated under oxidative stress. In Plant Programmed Cell Death: Methods and Protocols (De Gara, L. and Locato, V., eds.), pp. 117-124, Springer.

2017年
Yin, L., Mano, J., Tanaka, K., Wang, S., Zhang, M., Deng, X., Zhang, S. (2017) High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiol. Plant., 161: 211-223.
Mano, J., Ishibashi, A., Muneuchi, H., Morita, C., Sakai, H., Biswas, Md. S., Koeduka, T. and Kitajima, S. (January 2017) Acrolein-detoxifying isozymes of glutathione transferase in plants. Planta, 245: 255-264.

2016年
Islam, Md. M., Ye, W., Matsushima, D., Munemasa, S., Okuma, E., Nakamura, Y., Biswas, Md. S., Mano, J. and Murata, Y. (December 2016) Reactive carbonyl species mediate abscisic acid signaling in guard cells. Plant Cell Physiol. 57: 2552-2563.
Biswas, Md. S. and Mano, J. (July 2016) Reactive carbonyl species activate caspase-3-like protease to initiate programmed cell death in plants. Plant Cell Physiol. 1432-1442.
Mano, J., Endo, T. and Miyake, C. (July 2016) How do photosynthetic organisms manage light stress? A tribute to the late Professor Kozi Asada. Plant Cell Physiol. 57 (7): 1351-1353.
真野純一(2016)日本植物学会監修「植物学の百科事典」(「活性酸素(ROS)」),丸善出版

2015年
Biswas, Md. S. and Mano, J. (July 2015) Lipid peroxide-derived short-chain carbonyls mediate hydrogen peroxide-induced and salt-induced programmed cell death in plants. Plant Physiol. 168: 885-898.
doi: http://dx.doi.org/10.1104/pp.115.256834
Wang, S., Yin, L., Mano, J. and Tanaka, K. (February 2015) Isolation of chloroplast inner and outer envelope membranes. Bio-protocol 5 (4): e1405. http://www.bio-protocol.org/e1405

2014年
Mano, J., Khorobrykh, S., Matsui, K., Iijima, Y., Sakurai, N., Suzuki, H. and Shibata, D. (December 2014) Acrolein is formed from trienoic fatty acids in chloroplasts: A targeted metabolomics approach. Plant Biotechnol. 31 (5): 535-544.
Wang, S., Uddin, Md. I., Tanaka, K., Yin, L., Qi, Y., Mano, J., Matsui, K., Shimomura, N., Sakaki, T., Deng, X. and Zhang, S. (May 2014) Maintenance of chloroplast structure and function by overexpression of the OsMGD gene leads to enhanced salt tolerance in tobacco. Plant Physiol. 165(3): 1144-1155.
Mano, J., Nagata, M., Okamura, S., Shiraya, T., and Mitsui, T. (July 2014) Identification of oxidative-modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach. Plant Cell Physiol. 55: 1233-1244.
真野純一(2014年12月)活性酸素は生体分子にどう作用するか?− 酸化シグナルを伝える活性カルボニル種の生成と作用.光合成研究.24 (3): pp. 84-89.
真野純一(2014)「生きている」状態とはどんなもの?放送大学面接授業テキスト.(平成26年11月15日,16日)

2013年
Endo S., Fujimoto, A., Kumada, S., Matsunaga, T., Ohno S., Mano, J., Tajima, K., El-Kabbani, O., Hara, A. (February 2013) Modulation of activity and inhibitor sensitivity of rabbit aldose reductase-like protein (AKR1B19) by oxidized glutathione and SH-reagents. Chem. Biol. Interact. 202: 146–152.

2012年
Endo, S., Matsunaga, T., Kumada, S., Fujimoto, A., Ohno, S., El-Kabbani, O., Hu, D., Toyooka, N., Mano, J., Tajima, K. and Hara, A (November 2012). Characterization of rabbit aldose reductase-like protein with 3-hydroxysteroid dehydrogenase activity. Arch. Biochem. Biophys. 527: 23-30.
Matsui, K., Sugimoto, K., Mano, J., Ozawa, R. and Takabayashi, J. (30 April 2012) Differential metabolism of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS One 7: e36433.
Mano, J. (October 2012) Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol. Biochem., 59: 90-97.

2011年
Khorobrykh, S. A., Khorobrykh, A. A., Yanykin, D. V., Ivanov, B. N., Klimov, V. V. and Mano, J. (2011) Photoproduction of catalase-insensitive peroxides on the donor side of manganese-depleted photosystem II: evidence with a specific fluorescent probe. Biochemistry, 50:10658-10665. DOI: 10.1021/bi200945v. Publication Date (Web): October 24, 2011
Koeduka, T., Watanabe, B., Suzuki, S., Hiratake, J., Mano, J. and Yazaki, K. (August 2011) Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha,beta-hydrogenation of phenylbutanones in raspberry fruits. Biochem. Biophys. Res. Commun. 412: 104-108.
真野純一(2011)生命の成り立ちを考える−科学的生命観を身につけるために−.平成23年度教員免許状更新講習テキスト.(平成23年8月28日)

2010年
Mano, J., Tokushige, K., Mizoguchi, H., Fujii, H. and Khorobrykh, S. (2010) Accumulation of lipid peroxide-derived, toxic alpha,beta-unsaturated aldehydes (E)-2-pentenal, acrolein and (E)-2-hexenal in leaves under photoinhibitory illumination. Plant Biotechnol. 27: 193-197.
Yin, L., Mano, J., Wang, S., Tsuji, W. and Tanaka, K. (2010) The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol. 152: 1406-1417.

2009年
Mano, J., Miyatake, F., Hiraoka, E. and Tamoi, M. (2009) Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta 230: 639-648.
Matsui, K., Sugimoto, K., Kakyumyan, P., Khorobrykh, S. A. and Mano, J. (2009) Volatile oxylipins and related compounds formed under stress in plants. In Methods in Molecular Biology ‘Lipidomics’ (Armstrong, D. ed.), pp. 17-28, Humana Press, Totowa.

2008年
真野純一,Sergey Khorobrykh,尼子克己(2008)活性酸素種,抗酸化物.光合成研究法.低温科学.67: pp. 179-195.
真野純一(2008)葉緑体の光合成活性測定—単離葉緑体を用いた炭酸固定測定.光合成研究法.低温科学.67: pp. 159-160.
真野純一(2010)問う力を.山口大学広報誌 2010. 3月号,pp. 18.

2007年
真野純一(2007)植物の環境ストレスと活性酸素.山口大学環境保全,No.23, pp.38-41.

2006年
Mano, J., Nakahara, T., Torii, Y., Hirose, H., Miyakoshi, J. and Takimoto, K. (2006) Seed deterioration due to high humidity and high temperature is suppressed by extremely low frequency magnetic fields. Seed Sci. Technol. 34, 189-192.

2005年
Mano, J., Belles-Boix, E., Babiychuk, E., Inzé, D., Torii, Y., Hiraoka, E., Takimoto, K., Slooten, L., Asada, K. and Kushnir S. (2005) Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls. Plant Physiol. 139: 1773-1783.
真野純一 (2005) 植物の活性アルデヒド解毒代謝機構の解明.第29回 財団法人山田科学振興財団事業報告書 2005年度,pp.87-89.

2004年
Mano, J., Hideg, É. and Asada, K. (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch. Biochem. Biophys. 429: 71-80.

2003年
真野純一 (2003) 日本光合成研究会編「光合成辞典」(「F0 蛍光」pp. 38, 「過還元」pp. 53, 「偽循環的電子伝達」pp. 72, 「クロロフィル蛍光の光化学的消光」pp. 93, 「クロロフィル蛍光の非光化学的消光」pp. 93, 「クロロフィル蛍光の誘導期現象」pp. 93-94, 「三重項クロロフィル」pp. 144, 「循環的電子伝達」pp. 172, 「パラコート」pp. 266, 「光増感反応」pp. 282,「光阻害」pp. 282-283,「光要求性除草剤」pp. 285, 「非循環的電子伝達」pp. 286, 「フェントン反応」pp. 301-302),学会出版センター.
真野純一 (2003) 久馬一剛ほか編「熱帯農業事典」(「強光阻害」pp. 129-130, 「スーパーオキシドジスムターゼ」pp. 273,「光呼吸経路」pp. 473-474),養賢堂.

2002年
Mano, J., Torii, Y., Hayashi, S., Takimoto, K., Matsui, K., Nakamura, K., Inzé, D., Babiychuk, E., Kushnir, S. and Asada, K. (2002) The NADPH:quinone oxidoreductase P1-zeta-crystallin in Arabidopsis catalyzes the alpha,beta-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol. 43: 1445-1455.
Mano, J. (2002) Early events in environmental stresses in plants — Induction mechanisms of oxidative stress. In Oxidative Stress in Plants (Inzé, D. and Van Montagu, M., eds.), pp. 217-245, Taylor & Francis Group, London.

2001年
Mano, J., Ohno, C., Domae, Y. and Asada, K. (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: Its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim. Biophys. Acta 1504: 276-288.
Sugimoto, T., Mori, T., Mano, J., Mutoh, T., Shiinoki, Y. and Matsumura, Y. (2001) Effects of fat crystallization on the behavior of proteins and lipids at oil droplet surfaces. J. Amer. Oil Chem. Soc. 78: 183-188.
Yang, S. J., Hosokawa, M., Mizuta, Y., Yun, J., Mano, J. and Yazawa, S. (2001) Antioxidant capacity is correlated with susceptibility to leaf spot caused by a rapid temperature drop in Saintpaulia (African violet). Sci. Horticul. 88: 59-69.

2000年
Mano, J., Babiychuk, E., Belles-Boix, E., Hiratake, J., Kimura, K., Inzé, D., Kushnir, S. and Asada, K. (2000) A novel NADPH: diamide oxidoreductase activity in Arabidopsis thaliana P1 -crystallin. Eur. J. Biochem. 267: 3661-3671.
Mano, J., Yoon, H.-J., Asada, K., Babiychuk, E., Inzé, D. and Mikami, B. (2000) Crystallization and preliminary X-ray crystallographic analysis of NADPH: azodicarbonyl/quinone reductase, a plant -crystallin. Biochim. Biophys. Acta, 1480: 374-376.
Kimata-Ariga, Y., Matsumura, T., Kada, S., Fujimoto, H., Fujita, Y., Endo, T., Mano, J., Sato, F. and Hase, T. (2000) Differential electron flow around photosytem I by two C4-photosynthetic-cell-specific ferredoxins. EMBO J., 19: 5041-5050.
Sakihama, Y., Mano, J., Sano, S., Asada, K. and Yamasaki, H. (2000) Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochem. Biophys. Res. Commun. 279: 949-954.
真野純一 (2000) 植物の環境応答と葉緑体活性酸素代謝−環境ストレスによる酸化的傷害をもたらす初期イベントは何か.化学と生物.38: 425-427.

1999年
Izawa, S., Maeda, K., Sugiyama, K., Mano, J., Inoue, Y. and Kimura, A. (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J. Biol. Chem. 274: 28459-28465.
真野純一(1999)光合成微生物.木村光編「ゲノム微生物学」pp. 90-93,シュプリンガーフェアラーク東京.
真野純一,浅田浩二 (1999) 光・酸素ストレスを回避する分子機構.蛋白質核酸酵素.44: 2239-2245.

1998年
Izawa, S., Maeda, K., Miki, T., Mano, J., Inoue, Y. and Kimura, A. (1998) Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem. J. 330: 811-817.
Asada, K., Endo, T., Mano, J. and Miyake, C. (1998) Molecular mechanism for relaxation of and protection from light stress. In Stress Response of Photosynthetic Organisms (Satoh, K. and Murata, N. eds.), pp. 37-52, Elsevier, Amsterdam.
真野純一,浅田浩二 (1998) ビタミンC.吉川敏一編著「抗酸化物質のすべて」pp. 82-92,先端医学社.

1997年
Mano, J., Ushimaru, T. and Asada, K. (1997) Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: Protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth. Res. 53: 197-204.
Hideg, É., Mano, J., Ohno, C. and Asada, K. (1997) Increased levels of mono-dehydroascorbate radical in UV-B-irradiated broad bean leaves. Plant Cell Physiol. 38: 684-690.

1996年
Nishimura, K., Goto, M. and Mano, J. (1996) Participation of the superoxide radical in the beneficial effect of ascorbic acid on heat-induced fish meat gel (Kamaboko). Biochem. Biotech. Biosci. 60: 1966-1970.
Heber, U., Miyake, C., Mano, J., Ohno, C. and Asada, K. (1996) Monodehydroascorbate radical detected by electron paramagnetic resonance spectrometry is a sensitive probe of oxidative stress in leaves. Plant Cell Physiol. 37: 1066-1072.
真野純一,浅田浩二 (1996) 葉緑体の活性酸素消去系−アスコルビン酸の中心的役割.組織培養,22: 160-165.

1995年
Mano, J., Miyake, C., Schreiber, U. and Asada, K. (1995) Photoactivation of the electron flow from NADPH to plastoquinone in spinach chloroplasts. Plant Cell Physiol. 36: 1589-1598.
Mori, I., Fonné-Pfister, R., Matsunaga, S., Tada, S., Kimura, Y., Iwasaki, G., Mano, J., Hatano, M., Nakano, T., Koizumi, S., Scheidegger, A., Hayakawa, K. and Ohta, D. (1995) A novel class of herbicides. Specific inhibitors of imidazoleglycerol phosphate dehydratase. Plant Physiol. 107: 719-723.
Kawamoto, K., Mano, J. and Asada, K. (1995) Photoproduction of the azidyl radical from the azide anion on the oxidizing side of photosystem II and suppression of photooxidation of tyrosine Z by the azidyl radical. Plant Cell Physiol. 36: 1121-1129.

1994年
Kheirolomoom, A., Mano, J., Nagai, A., Ogawa, A., Iwasaki, G. and Ohta, D. (1994) Steady-state kinetics of cabbage histidinol dehydrogenase. Arch. Biochem. Biophys. 312: 493-500.
Kawamoto, K., Chen, G.-X., Mano, J. and Asada, K. (1994) Photoinactivation of photosystem II by in situ-photoproduced hydroxyurea radicals. Biochemistry 33: 10487-10493.

1993年
Mano, J., Kawamoto, K., Dismukes, G. C. and Asada, K. (1993) Inhibition of the catalase reaction of photosystem II by anions. Photosynth. Res. 38: 433-440.
Mano, J., Hatano, M., Koizumi, S., Tada, S., Hashimoto, M. and Scheidegger, A. (1993) Purification and properties of a monofunctional imidazolegerol-phosphate dehydratase from wheat. Plant Physiol. 103: 733-739.
真野純一 (1993) 植物の光合成による二酸化炭素固定.ケミカルエンジニヤリング,38: 46-52.

1992年
Nagai, A., Suzuki, K., Ward, E., Moyer, M., Hashimoto, M., Mano, J., Ohta, D. and Scheidegger, A. (1992) Overexpression of plant histidinol dehydrogenase using a baculovirus expression vector system. Arch. Biochem. Biophys. 295: 235-239.

1990年
Takahashi, M., Mano, J. and Asada, K. (1990) Functional structure of the oxygen-evolving unit of photosystem II as determined by radiation inactivation. Plant Cell Physiol. 31: 1191-1198.

1988年
真野純一,浅田浩二 (1988) モノデヒドロアスコルビン酸還元酵素. 蛋白質核酸酵素,33: 2862-2868.

1987年
Mano, J., Takahashi, M. and Asada, K. (1987) Oxygen evolution from hydrogen peroxide in photosystem II: Flash-induced catalatic activity of water-oxidizing photosystem II membranes. Biochemistry 26: 2495-2501.

1985年
Takahashi, M., Mano, J. and Asada, K. (1985) Molecular sizes of catalytic units of oxygen evolution and reaction center in photosystem II of spinach thylakoids. Plant Cell Physiol. 26: 383-388.