【Original Articles】

  1. Synthesis of 1‐amino‐3‐aryl Naphthalenes from Bis(Perfluoroalkanesulfonyl)Imide with 1,2‐diethynylbenzenes
    Kawamoto, T.; Yamasaki, T.; Ikazaki, T.; Matsubara, H.; Kamimura, A.
    Asian J. Org. Chem. 2024, e202400035. https://doi.org/10.1002/ajoc.202400035
    ChemRxiv https://doi.org/10.26434/chemrxiv-2024-lwd3h
  2. Boosting Sulfonylation Reactions between Vinyl Triflates and Alkenes toward β-Ketosulfones Using Aqueous Sulfurous Acid.
    Kawamoto, T.; Takeda, Y.; Kawabata, T.; Kamimura, A.
    Synthesis 2024. https://doi.org/10.1055/a-2295-8117
  3. 2-Phenylsulfanylhydroquinone Dimer Mono-Quinone Derivative as a New Fluorescence Dye Responding to Reductive Conditions.
    Kamimura, A.; Abe, K.; Kawamoto, T.
    Arkivoc 2024, 202312086. https://doi.org/10.24820/ARK.5550190.P012.086
  4. Radical Cascade Reaction in Heterocyclic Synthesis: Formation of Bicyclic 2,3‐dihydrostannoles and Other Heterocyclic Compounds from Amide‐type 1,6‐Enyne Compounds.
    Kamimura, A.; Kohno, K.; Ishido, K.; Kamohara, N.; Kawamoto, T.
    Asian J. Org. Chem. 2023, 12, e202300223. https://doi.org/10.1002/ajoc.202300223
  5. Preparation and Hydrophilicity/Lipophilicity of Solubility-Switchable Ionic Liquids.
    Kamimura, A.; Yanagisawa, K.; Kaneko, N.; Kawamoto, T.; Fujii, K.
    ACS Omega 2022, 7, 48540–48554. https://doi.org/10.1021/acsomega.2c06998
  6. Vicinal Difunctionalization of Alkenes Using Vinyl Triflates Leading to γ-Trifluoromethylated Ketones
    Kawamoto, T.; Kawabata, T.; Noguhi, K.; Kamimura, A.
    Org. Lett. 202224, 324–327.
    Https://Doi.Org/10.1021/Acs.Orglett.1c03988
  7. One-Pot Synthesis of CF3 ‑ Substituted Vinyl Trifluoromethanesulfonamides from Imines and Trifluoromethanesulfonic Anhydride
    Kawamoto, T.; Ikawa, K.; Kamimura, A.
    J. Org. Chem. 202186, 15818–15824.
    Https://Doi.Org/10.1021/Acs.Joc.1c01969
  8. Synthesis of 1-(1-Arylvinyl)Pyridin-2(1 H )-Ones from Ketones and 2-Fluoropyridine .
    Kawamoto, T.; Ikeda, S.; Kamimura, A.
    J. Org. Chem. 202186, 13783–13789.
    Https://Doi.Org/10.1021/Acs.Joc.1c01615
  9. Blacklight‐induced Hydroxylation of Arylboronic Acids Leading to Hydroxyarenes.
    Kawamoto, T.; Ryu, I.
    Helv. Chim. Acta 2021104, e2100102.
    Https://Doi.Org/10.1002/Hlca.202100102
  10. Borane Evolution and Its Application to Organic Synthesis Using the Phase-Vanishing Method.
    Soga, N.; Yoshiki, T.; Sato, A.; Kawamoto, T.; Ryu, I.; Matsubara, H.
    Tetrahedron Lett. 202169, 152977.
    Https://Doi.Org/10.1016/J.Tetlet.2021.152977
  11. Development of Water Solubility of 2-Phenylsulfanylhydroquinone Dimer Dye.
    Kamimura, A.; Umemoto, H.; Kawamoto, T.; Honda, T.
    ACS Omega 20216, 9254–9262.
    Https://Doi.Org/10.1021/Acsomega.1c00703
  12. Redox-neutral Tetrafluoroethylation of Aryl Alkynes with 1,1,2,2-Tetrafluoroethane sulfonic acid leading to α-Tetrafluoroethylated Acetophenones
    Kawamoto, T.; Noguchi, K.; Sasaki, R.; Takata, R.; Matsubara, H.; Kamimura, A. 
    Chem. Eur. J. 2021, 9529–9534.
    Https://Doi.Org/10.1002/Chem.202100137
    Selected as Frontispiece 
    Https://Doi.Org/10.1002/Chem.202183763
  13. Inverse Hydroboration Of Imines With NHC-Boranes Is Promoted By Diphenyl Disulfide And Visible Light.
    Kawamoto, T.; Morioka, T.; Noguchi, K.; Curran, D. P.; Kamimura, A.
    Org. Lett. 202123, 1825–1828.
    Https://Doi.Org/10.1021/Acs.Orglett.1c00230
  14. Hydrodecyanation of Secondary Alkyl Nitriles and Malononitriles to Alkanes using DiMeImd-BH3.
    Kawamoto, T.; Oritani, K.; Kawabata, A.; Morioka, T.; Matsubara, H.; Kamimura, A.
    J. Org. Chem. 202085, 6137.
    Http://Dx.Doi.Org/10.1021/Acs.Joc.0c00105
  15. Highly Cumulated Radical Cascade Reaction of aza-1,6-Enyenes: Stereoselective Synthesis of exo-Methylene Piperidines.
    Kamimura, A.; Itaya, T.; Yoshinaga, T.; Nozawa, R.; Kawamoto, T.; Sumimoto, M.; Uno, H.
    Eur. J. Org. Chem. 2020, 700.
    Http://Dx.Doi.Org/10.1002/Ejoc.202000034
  16. 2‐Sulfanylhydroquinone Dimer as a Switchable Fluorescent Dye.
    Kamimura, A.; Sakamoto, S.; Umemoto, H.; Kawamoto, T.; Sumimoto, M.
    Chem. Eur. J. 201925, 14081.
    Http://Dx.Doi.Org/10.1002/Chem.201903436

    Selected as Cover Feature
    Http://Dx.Doi.Org/10.1002/Chem.201904089
  17. The regioselective trifluoromethylation of 1,3-bis(vinyl triflates) in the absence of external trifluoromethyl sources.
    Kawamoto, T.; Sasaki, R.; Kamimura, A.; Matsubara, H.
    J. Fluorine Chem. 2019221, 66–69.
    Http://Dx.Doi.Org/10.1016/J.Jfluchem.2019.04.002
  18. Depolymerization of polyamide 6 in hydrophilic ionic liquids.
    Kamimura, A.; Shiramatsu, Y.; Kawamoto, T.
    Green Energy and Environment 20194, 166-170.
    Http://Dx.Doi.Org/10.1016/J.Gee.2019.01.002
  19. Comparison of homofugality among alkyl groups attached to tin atom.
    Kamimura, A.; Yoshinaga, T.; Miyazaki, K.; Kawamoto, T.
    Heteroatom Chem20182, e21469–7.
    http://Dx.Doi.Org/10.1002/Hc.21469
  20. Asymmetric Michael Reaction of Aldehydes and Dicyanoalkenes Catalyzed by Diphenylprolinol Silyl Ether.
    Hayashi, Y.; Kranidiotis-Hisatomi, N.; Sakamoto, D.; Oritani, K.; Kawamoto, T.; Kamimura, A.
    Eur. J. Org. Chem. 2018, 6843–6847.
    Http://Dx.Doi.Org/10.1002/Ejoc.201800831
  21. A Theoretical Study on Radical-Based Aminocarbonylation of Aryl Iodides.
    Kawamoto, T.; Matsubara, H.; Fukuyama, T.; Ryu, I.
    Chem. Lett. 201847, 1169–1171.
    Http://Dx.Doi.Org/10.1246/Cl.180599
  22. Theoretical Calculations for the 1,4-Hydrogen Shift of 1-Hydroxyallyl Radicals Leading to α-Keto Radicals; Prediction of Facilitation by 1-Amino and 3-Tin Substituents.
    Matsubara, H.; Kawamoto, T.; Fukuyama, T.; Ryu, I.
    Chem. Lett. 201847, 1197–1199.
    Http://Dx.Doi.Org/10.1246/Cl.180522
  23. Development of a microwave-assisted sustainable conversion of furfural hydrazones to functionalised phthalimides in ionic liquids.
    Karaluka, V.; Murata, K.; Masuda, S.; Shiramatsu, Y.; Kawamoto, T.; Hailes, H. C.; Sheppard, T. D.; Kamimura, A.
    RSC Adv. 20188, 22617–22624.
    Http://Dx.Doi.Org/10.1039/C8RA03895C
  24. Solubility-switchable ionic liquids: A control of hydrophilicity and hydrophobicity using a protective group.
    Kamimura, A.; Shiramatsu, Y.; Murata, K.; Kawamoto, T.
    Chem. Lett2018, 47, 1079–1081.
    Http://Dx.Doi.Org/10.1246/Cl.180382
  25.  Deltaarenes; novel macrocyclic molecules that are readily available from 1,4-benzoquinone and benzene dithiols.
    Kamimura, A.; Watanabe, R.; Fukumitsu, T.; Ikeda, K.; Kawamoto, T.; Sumimoto, M.; Mori, S.; Uno, H.
    Tetrahedron 2018, 74, 5303–5308.
    Http://Dx.Doi.Org/10.1016/J.Tet.2018.04.070
  26. Thiol-Catalyzed Radical Decyanation of Aliphatic Nitriles with Sodium Borohydride
    Kawamoto, T.; Oritani, K.; Curran, D. P.; Kamimura, A.
    Org. Lett. 201820, 2084–2087.
    Https://Dx.Doi.Org/10.1021/Acs.Orglett.8b00626
  27. Tris (trimethylsilyl) silane-Mediated Reductive Decyanation and Cyano Transfer Reactions of Malononitriles
    Kawamoto, T.; Shimaya, Y.; Curran, D. P.; Kamimura, A.
    Chem. Lett. 201847, 573–575.
    Https://Doi.Org/10.1246/Cl.171231
  28. N-Heterocyclic Carbene Boryl Iodides Catalyze Insertion Reactions of N-Heterocyclic Carbene Boranes and Diazoesters
    Allen, T.H.; Kawamoto, T.; Gardner, S.; Geib, S.J.; Curran, D.P.
    Org. Lett. 
    201719, 3680–3683.
    Http://Dx.Doi.Org/10.1021/Acs.Orglett.7b01777
  29. An efficient and selective conversion of sorbitol in ionic liquids: Use of ion exchange resin as a solid acid catalyst
    Kamimura, A.; Murata, K.; Kawamoto, T.
    Tetrahedron Lett. 
    201758, 3616–3618.
    Http://Dx.Doi.Org/10.1016/J.Tetlet.2017.07.105
  30. Synthesis of α-Trifluoromethylated Ketones from Vinyl Triflates in the Absence of External Trifluoromethyl Sources
    Kawamoto, T.; Sasaki, R.; Kamimura, A.
    Angew. Chem. Int. Ed. 
    201756, 1342–1345.
    Http://Dx.Doi.Org/10.1002/Anie.201608591
    Highlighted in Synfacts, 2017, 13. 0072.
    Http://Dx.Doi.Org/10.1055/S-0036-1589791
  31. Asymmetric Synthesis of Bicyclic Nitrocyclopropanes from Primary Nitro Compounds and Stereoselective Formation of Tetrahydro-2H-cyclopenta[b]furans via Ring Expansion/Cyclization Reaction
    Kamimura, A.; Moriyama, T.; Ito, Y.; Kawamoto, T.; Uno, H.
    J. Org. Chem. 
    201681, 4664–4681.
    Http://Dx.Doi.Org/10.1021/Acs.Joc.6b00566
  32. 1,3-dimethylimidazoyl-2-ylidene borane
    Gardner, S.; Kawamoto, T.; Curran, D.P.
    Org. Synth. 
    201592, 342–355.
    Http://Dx.Doi.Org/10.15227/Orgsyn.092.0342
  33. A radical cascade reaction of aza-1,6-enyne compounds using allyltributyltin
    Kamimura, A.; Miyazaki, K.; Kawamoto, T.; Uno, H.
    Tetrahedron 
    201672, 7722–7726.
    Http://Dx.Doi.Org/10.1016/J.Tet.2016.04.078
  34. Oxidative synthesis of isoxazoline-N-oxide from optically active nitro alcohols
    Moriyama, T.; Kawamoto, T.; Uno, H.; Kamimura, A.
    Heterocycles 
    201692, 1479–1489.
    Http://Dx.Doi.Org/10.3987/COM-16-13497
  35. An oxidative cyclopropanation reaction of primary nitro compounds using Fe2O3
    Moriyama, T.; Ito, Y.; Koyama, Y.; Kawamoto, T.; Kamimura, A.
    Tetrahedron Lett. 
    201657, 3127–3128.
    Http://Dx.Doi.Org/10.1016/J.Tetlet.2016.06.013
  36. A regioselective double Stille coupling reaction of bicyclic stannolanes
    Kamimura, A.; Tanaka, T.; So, M.; Itaya, T.; Matsuda, K.; Kawamoto, T.
    Org. Biomol. Chem. 
    201614, 8109–8122.
    Http://Dx.Doi.Org/10.1039/C6ob01018k
  37. Synthesis of 1,3-Dialkylimidazol-2-ylidene Boranes from 1,3-Dialkylimidazolium Iodides and Sodium Borohydride
    Gardner, S.; Kawamoto, T.; Curran, D.P.
    J. Org. Chem. 
    201580, 9794–9797.
    Http://Dx.Doi.Org/10.1021/Acs.Joc.5b01682
  38. Photoinduced Aminocarbonylation of Aryl Iodides
    Kawamoto, T.; Sato, A.; Ryu, I.
    Chem. Eur. J. 
    201521, 14764–14767.
    Http://Dx.Doi.Org/10.1002/Chem.201503164
    Selected as Hot Paper.
  39. Radical Reactions of N -Heterocyclic Carbene Boranes with Organic Nitriles: Cyanation of NHC-Boranes and Reductive Decyanation of Malononitriles
    Kawamoto, T.; Geib, S.J.; Curran, D.P.
    J. Am. Chem. Soc. 
    2015137, 8617–8622.
    Http://Dx.Doi.Org/10.1021/Jacs.5b04677
  40. Borohydride-mediated radical addition reactions of organic iodides to electron-deficient alkenes
    Kawamoto, T.; Uehara, S.; Hirao, H.; Fukuyama, T.; Matsubara, H.; Ryu, I.
    J. Org. Chem. 
    201479, 3999–4007.
    Http://Dx.Doi.Org/10.1021/Jo500464q
  41. Cyanoborohydride-promoted radical arylation of benzene
    Kawamoto, T.; Sato, A.; Ryu, I.
    Org. Lett. 
    201416, 2111–2113.
    Http://Dx.Doi.Org/10.1021/Ol500614q
  42. A theoretical study on reduction of acyl radicals with borohydride anions
    Kawamoto, T.; Matsubara, H.; Ryu, I.
    Chem. Lett. 
    201443, 1140–1142.
    Http://Dx.Doi.Org/10.1246/Cl.140370
    Selected as Editor’s Choice
  43. Flow Giese reaction using cyanoborohydride as a radical mediator
    Fukuyama, T.; Kawamoto, T.; Kobayashi, M.; Ryu, I.
    Beilstein J. Org. Chem. 
    20139, 1791–1796.
    Http://Dx.Doi.Org/10.3762/Bjoc.9.208
  44. Efficient hydroxymethylation reactions of iodoarenes using CO and 1,3-dimethylimidazol-2-ylidene borane
    Kawamoto, T.; Okada, T.; Curran, D.P.; Ryu, I.
    Org. Lett. 
    201315, 2144–2147.
    Http://Dx.Doi.Org/10.1021/Ol4006294
  45. Radical addition of alkyl halides to formaldehyde in the presence of cyanoborohydride as a radical mediator. A new protocol for hydroxymethylation reaction
    Kawamoto, T.; Fukuyama, T.; Ryu, I.
    J. Am. Chem. Soc. 
    2012134, 875–877.
    Http://Dx.Doi.Org/10.1021/Ja210585n
    Highlighted in Synform, 2012, 5.
    Http://Dx.Doi.Org/10.1055/S-0031-1290940
    Highlighted in Nachrichten aus der Chemie, 2012, 60, 210.
    Http://Dx.Doi.Org/10.1002/Nadc.201290114
  46. Stereocontrolled synthesis of substituted bicyclic ethers through oxy-Favorskii rearrangement: Total synthesis of (±)-communiol e
    Kobayashi, S.; Kinoshita, T.; Kawamoto, T.; Wada, M.; Kuroda, H.; Masuyama, A.; Ryu, I.
    J. Org. Chem. 
    201176, 7096–7103.
    Http://Dx.Doi.Org/10.1021/Jo201064h
    Highlighted in Synfacts, 2011, 111160.
    Http://Dx.Doi.Org/10.1055/S-0031-1289273
  47. Thermal retro-aldol reaction using fluorous ether F-626 as a reaction medium
    Fukuyama, T.; Kawamoto, T.; Okamura, T.; Denichoux, A.; Ryu, I.
    Synlett 
    2010, 2193–2196.
    Http://Dx.Doi.Org/10.1055/S-0030-1258501

  48. Black-light-induced radical/ionic hydroxymethylation of alkyl iodides with atmospheric co in the presence of tetrabutylammonium borohydride
    Kobayashi, S.; Kawamoto, T.; Uehara, S.; Fukuyama, T.; Ryu, I.
    Org. Lett. 
    201012, 1548–1551.
    Http://Dx.Doi.Org/10.1021/Ol1002847

【Reviews, Accounts, etc】

  1. Ionic Liquids for the Chemical Recycling of Polymeric Materials and Control of Their Solubility.
    Kamimura, A.; Kawamoto, T.; Fujii, K.
    Chem. Rec. 2023, e202200269. https://doi.org/10.1002/tcr.202200269
  2. New Directions in Radical Carbonylation Chemistry. Combination with Electron Catalysis, Photocatalysis and Ring-Opening.
    Kawamoto, T.; Fukuyama, T.; Picard, B.; Ryu, I.
    Chem. Commun. 2022, 7608–7617.
    https://doi.org/10.1039/d2cc02700c
  3. ビニルトリフラートおよびその類縁体のラジカル反応
    川本拓治,上村明男
    有機合成化学協会誌,2020, 80, 554–562.
    https://doi.org/10.5059/yukigoseikyokaishi.80.554
  4. Recent Advances in Radical Reactions of Vinyl Triflates and Their Derivatives.
    Kawamoto, T.; Kamimura, A.
    Synthesis 2022, 54, 2539–2547.
    https://doi.org/10.1055/A-1765-7383/ID/JR000-3.
  5. Applications of Radical Carbonylation and Amine Addition Chemistry: 1,4-Hydrogen Transfer of 1‑Hydroxylallyl Radicals.
    Matsubara, H.; Kawamoto, T.; Fukuyama, T.; Ryu, I.
    Acc. Chem. Res. 201851, 2023–2035.
    Http://Dx.Doi.Org/10.1021/Acs.Accounts.8b00278
  6. Radical reactions of borohydrides
    Kawamoto, T.; Ryu, I.
    Org. Biomol. Chem. 
    201412, 9733–9742.
    Http://Dx.Doi.Org/10.1039/C4ob01784f
    Selected as Inside front cover.
  7. Innovative carbonylation methods
    Kawamoto, T.; Fukuyama, T.; Ryu, I.
    有機合成化学協会誌
     201472, 493–505.
    Http://Dx.Doi.Org/10.5059/Yukigoseikyokaishi.72.493
  8. Free radical-mediated hydroxymethylation using CO and HCHO
    Kawamoto, T.; Ryu, I.
    Chimia 
    201266, 372–376.
    Http://Dx.Doi.Org/10.2533/Chimia.2012.372